diff --git a/Marlin/Conditionals_post.h b/Marlin/Conditionals_post.h index 90e04d95f..1d994ce1a 100644 --- a/Marlin/Conditionals_post.h +++ b/Marlin/Conditionals_post.h @@ -693,43 +693,20 @@ * Delta radius/rod trimmers/angle trimmers */ #if ENABLED(DELTA) - #ifndef DELTA_ENDSTOP_ADJ - #define DELTA_ENDSTOP_ADJ { 0 } - #endif - #ifndef DELTA_RADIUS_TRIM_TOWER_1 - #define DELTA_RADIUS_TRIM_TOWER_1 0.0 - #endif - #ifndef DELTA_RADIUS_TRIM_TOWER_2 - #define DELTA_RADIUS_TRIM_TOWER_2 0.0 - #endif - #ifndef DELTA_RADIUS_TRIM_TOWER_3 - #define DELTA_RADIUS_TRIM_TOWER_3 0.0 - #endif - #ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_1 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0 + #ifndef DELTA_CALIBRATION_RADIUS + #define DELTA_CALIBRATION_RADIUS DELTA_PRINTABLE_RADIUS - 10 #endif - #ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_2 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 - #endif - #ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_3 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 - #endif - #ifndef DELTA_TOWER_ANGLE_TRIM_1 - #define DELTA_TOWER_ANGLE_TRIM_1 0.0 + #ifndef DELTA_ENDSTOP_ADJ + #define DELTA_ENDSTOP_ADJ { 0, 0, 0 } #endif - #ifndef DELTA_TOWER_ANGLE_TRIM_2 - #define DELTA_TOWER_ANGLE_TRIM_2 0.0 + #ifndef DELTA_TOWER_ANGLE_TRIM + #define DELTA_TOWER_ANGLE_TRIM {0, 0, 0} #endif - #ifndef DELTA_TOWER_ANGLE_TRIM_3 - #define DELTA_TOWER_ANGLE_TRIM_3 0.0 + #ifndef DELTA_RADIUS_TRIM_TOWER + #define DELTA_RADIUS_TRIM_TOWER {0, 0, 0} #endif - #if ENABLED(DELTA_AUTO_CALIBRATION) - #ifndef H_FACTOR - #define H_FACTOR 1.00 - #endif - #ifndef R_FACTOR - #define R_FACTOR -2.25 - #endif + #ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER + #define DELTA_DIAGONAL_ROD_TRIM_TOWER {0, 0, 0} #endif #endif diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index 9c85c224a..bc1d682cd 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -302,9 +302,9 @@ float code_value_temp_diff(); extern float endstop_adj[ABC], delta_radius, delta_diagonal_rod, + delta_calibration_radius, delta_segments_per_second, - delta_diagonal_rod_trim[ABC], - delta_tower_angle_trim[ABC], + delta_tower_angle_trim[2], delta_clip_start_height; void recalc_delta_settings(float radius, float diagonal_rod); #elif IS_SCARA diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 1721bd19f..374a41ebb 100755 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -61,7 +61,7 @@ * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location) * G31 - Dock sled (Z_PROBE_SLED only) * G32 - Undock sled (Z_PROBE_SLED only) - * G33 - Delta '4-point' auto calibration iteration + * G33 - Delta '1-4-7-point' auto calibration : "G33 V<verbose> P<points> <A> <O> <T>" (Requires DELTA) * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes * G90 - Use Absolute Coordinates * G91 - Use Relative Coordinates @@ -585,10 +585,10 @@ static uint8_t target_extruder; // These values are loaded or reset at boot time when setup() calls // settings.load(), which calls recalc_delta_settings(). float delta_radius, - delta_tower_angle_trim[ABC], + delta_tower_angle_trim[2], delta_tower[ABC][2], delta_diagonal_rod, - delta_diagonal_rod_trim[ABC], + delta_calibration_radius, delta_diagonal_rod_2_tower[ABC], delta_segments_per_second, delta_clip_start_height = Z_MAX_POS; @@ -1830,6 +1830,9 @@ static void clean_up_after_endstop_or_probe_move() { float z_dest = LOGICAL_Z_POSITION(z_raise); if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset; + #if ENABLED(DELTA) + z_dest -= home_offset[Z_AXIS]; + #endif if (z_dest > current_position[Z_AXIS]) do_blocking_move_to_z(z_dest); @@ -1837,7 +1840,8 @@ static void clean_up_after_endstop_or_probe_move() { #endif //HAS_BED_PROBE -#if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) +#if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION) + bool axis_unhomed_error(const bool x, const bool y, const bool z) { const bool xx = x && !axis_homed[X_AXIS], yy = y && !axis_homed[Y_AXIS], @@ -1857,6 +1861,7 @@ static void clean_up_after_endstop_or_probe_move() { } return false; } + #endif #if ENABLED(Z_PROBE_SLED) @@ -2308,6 +2313,9 @@ static void clean_up_after_endstop_or_probe_move() { // move down quickly before doing the slow probe float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES); if (zprobe_zoffset < 0) z -= zprobe_zoffset; + #if ENABLED(DELTA) + z -= home_offset[Z_AXIS]; + #endif if (z < current_position[Z_AXIS]) do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST)); @@ -5009,11 +5017,12 @@ inline void gcode_G28() { /** * G30: Do a single Z probe at the current XY - * Usage: - * G30 <X#> <Y#> <S#> - * X = Probe X position (default=current probe position) - * Y = Probe Y position (default=current probe position) - * S = Stows the probe if 1 (default=1) + * + * Parameters: + * + * X Probe X position (default current X) + * Y Probe Y position (default current Y) + * S0 Leave the probe deployed */ inline void gcode_G30() { const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER, @@ -5056,32 +5065,25 @@ inline void gcode_G28() { #if ENABLED(DELTA_AUTO_CALIBRATION) /** - * G33: Delta '4-point' auto calibration iteration - * - * Usage: G33 <Cn> <Vn> - * - * C (default) = Calibrate endstops, height and delta radius - * - * -2, 1-4: n x n probe points, default 3 x 3 - * - * 1: probe center - * set height only - useful when z_offset is changed - * 2: probe center and towers - * solve one '4 point' calibration - * -2: probe center and opposite the towers - * solve one '4 point' calibration - * 3: probe 3 center points, towers and opposite-towers - * averages between 2 '4 point' calibrations - * 4: probe 4 center points, towers, opposite-towers and itermediate points - * averages between 4 '4 point' calibrations - * - * V Verbose level (0-3, default 1) - * - * 0: Dry-run mode: no calibration - * 1: Settings - * 2: Setting + probe results - * 3: Expert mode: setting + iteration factors (see Configuration_adv.h) - * This prematurely stops the iteration process when factors are found + * G33 - Delta '1-4-7-point' auto calibration (Requires DELTA) + * + * Usage: + * G33 <Vn> <Pn> <A> <O> <T> + * + * Vn = verbose level (n=0-2 default 1) + * n=0 dry-run mode: setting + probe results / no calibration + * n=1 settings + * n=2 setting + probe results + * Pn = n=-7 -> +7 : n*n probe points + * calibrates height ('1 point'), endstops, and delta radius ('4 points') + * and tower angles with n > 2 ('7+ points') + * n=1 probes center / sets height only + * n=2 probes center and towers / sets height, endstops and delta radius + * n=3 probes all points: center, towers and opposite towers / sets all + * n>3 probes all points multiple times and averages + * A = abort 1 point delta height calibration after 1 probe + * O = use oposite tower points instead of tower points with 4 point calibration + * T = do not calibrate tower angles with 7+ point calibration */ inline void gcode_G33() { @@ -5091,49 +5093,55 @@ inline void gcode_G28() { set_bed_leveling_enabled(false); #endif - const int8_t pp = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS, - probe_points = (WITHIN(pp, 1, 4) || pp == -2) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS; - - int8_t verbose_level = code_seen('V') ? code_value_byte() : 1; - - #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) - #define _MAX_M33_V 3 - if (verbose_level == 3 && probe_points == 1) verbose_level--; // needs at least 4 points - #else - #define _MAX_M33_V 2 - if (verbose_level > 2) - SERIAL_PROTOCOLLNPGM("Enable DELTA_CALIBRATE_EXPERT_MODE in Configuration_adv.h"); - #endif + int8_t pp = (code_seen('P') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS), + probe_mode = (WITHIN(pp, 1, 7) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS); - if (!WITHIN(verbose_level, 0, _MAX_M33_V)) verbose_level = 1; + probe_mode = (code_seen('A') && probe_mode == 1 ? -probe_mode : probe_mode); + probe_mode = (code_seen('O') && probe_mode == 2 ? -probe_mode : probe_mode); + probe_mode = (code_seen('T') && probe_mode > 2 ? -probe_mode : probe_mode); + + int8_t verbose_level = (code_seen('V') ? code_value_byte() : 1); - float zero_std_dev = verbose_level ? 999.0 : 0.0; // 0.0 in dry-run mode : forced end + if (!WITHIN(verbose_level, 0, 2)) verbose_level = 1; gcode_G28(); - float e_old[XYZ], + const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h"; + float test_precision, + zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end + e_old[XYZ] = { + endstop_adj[A_AXIS], + endstop_adj[B_AXIS], + endstop_adj[C_AXIS] + }, dr_old = delta_radius, - zh_old = home_offset[Z_AXIS]; - COPY(e_old,endstop_adj); - #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) - // expert variables - float h_f_old = 1.00, r_f_old = 0.00, - h_diff_min = 1.00, r_diff_max = 0.10; - #endif - + zh_old = home_offset[Z_AXIS], + alpha_old = delta_tower_angle_trim[A_AXIS], + beta_old = delta_tower_angle_trim[B_AXIS]; + int8_t iterations = 0, + probe_points = abs(probe_mode); + const bool pp_equals_1 = (probe_points == 1), + pp_equals_2 = (probe_points == 2), + pp_equals_3 = (probe_points == 3), + pp_equals_4 = (probe_points == 4), + pp_equals_5 = (probe_points == 5), + pp_equals_6 = (probe_points == 6), + pp_equals_7 = (probe_points == 7), + pp_greather_2 = (probe_points > 2), + pp_greather_3 = (probe_points > 3), + pp_greather_4 = (probe_points > 4), + pp_greather_5 = (probe_points > 5); + // print settings SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate"); SERIAL_PROTOCOLPGM("Checking... AC"); if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)"); - #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) - if (verbose_level == 3) SERIAL_PROTOCOLPGM(" (EXPERT)"); - #endif SERIAL_EOL; LCD_MESSAGEPGM("Checking... AC"); - SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); - if (abs(probe_points) > 1) { + SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); + if (!pp_equals_1) { SERIAL_PROTOCOLPGM(" Ex:"); if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2); @@ -5146,74 +5154,84 @@ inline void gcode_G28() { SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); } SERIAL_EOL; + if (probe_mode > 2) { // negative disables tower angles + SERIAL_PROTOCOLPGM(".Tower angle : Tx:"); + if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+'); + SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2); + SERIAL_PROTOCOLPGM(" Ty:"); + if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+'); + SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2); + SERIAL_PROTOCOLPGM(" Tz:+0.00"); + SERIAL_EOL; + } #if ENABLED(Z_PROBE_SLED) DEPLOY_PROBE(); #endif - float test_precision; - int8_t iterations = 0; - - do { // start iterations - - setup_for_endstop_or_probe_move(); - - test_precision = - #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) - // Expert mode : forced end at std_dev < 0.1 - (verbose_level == 3 && zero_std_dev < 0.1) ? 0.0 : - #endif - zero_std_dev - ; + do { - float z_at_pt[13] = { 0 }; + float z_at_pt[13] = { 0 }, + S1 = 0.0, + S2 = 0.0; + int16_t N = 0; + test_precision = zero_std_dev; iterations++; // probe the points - int16_t center_points = 0; - - if (probe_points != 3) { + if (!pp_equals_3 && !pp_equals_6) { // probe the centre + setup_for_endstop_or_probe_move(); z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1); - center_points = 1; + clean_up_after_endstop_or_probe_move(); } - - int16_t step_axis = 4; - if (probe_points >= 3) { - for (int8_t axis = 9; axis > 0; axis -= step_axis) { // uint8_t starts endless loop + if (pp_greather_2) { // probe extra centre points + for (int8_t axis = (pp_greather_4 ? 11 : 9); axis > 0; axis -= (pp_greather_4 ? 2 : 4)) { + setup_for_endstop_or_probe_move(); z_at_pt[0] += probe_pt( - 0.1 * cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), - 0.1 * sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1); + cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), + sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1); + clean_up_after_endstop_or_probe_move(); } - center_points += 3; - z_at_pt[0] /= center_points; + z_at_pt[0] /= (pp_equals_5 ? 7 : probe_points); } - - float S1 = z_at_pt[0], S2 = sq(S1); - - int16_t N = 1, start = (probe_points == -2) ? 3 : 1; - step_axis = (abs(probe_points) == 2) ? 4 : (probe_points == 3) ? 2 : 1; - - if (probe_points != 1) { - for (uint8_t axis = start; axis < 13; axis += step_axis) - z_at_pt[axis] += probe_pt( - cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), - sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1 - ); - - if (probe_points == 4) step_axis = 2; + if (!pp_equals_1) { // probe the radius + float start_circles = (pp_equals_7 ? -1.5 : pp_equals_6 || pp_equals_5 ? -1 : 0), + end_circles = -start_circles; + bool zig_zag = true; + for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13; + axis += (pp_equals_2 ? 4 : pp_equals_3 || pp_equals_5 ? 2 : 1)) { + for (float circles = start_circles ; circles <= end_circles; circles++) { + setup_for_endstop_or_probe_move(); + z_at_pt[axis] += probe_pt( + cos(RADIANS(180 + 30 * axis)) * + (1 + circles * 0.1 * (zig_zag ? 1 : -1)) * delta_calibration_radius, + sin(RADIANS(180 + 30 * axis)) * + (1 + circles * 0.1 * (zig_zag ? 1 : -1)) * delta_calibration_radius, true, 1); + clean_up_after_endstop_or_probe_move(); + } + start_circles += (pp_greather_5 ? (zig_zag ? 0.5 : -0.5) : 0); + end_circles = -start_circles; + zig_zag = !zig_zag; + z_at_pt[axis] /= (pp_equals_7 ? (zig_zag ? 4.0 : 3.0) : + pp_equals_6 ? (zig_zag ? 3.0 : 2.0) : pp_equals_5 ? 3 : 1); + } } - - for (uint8_t axis = start; axis < 13; axis += step_axis) { - if (probe_points == 4) + if (pp_greather_3 && !pp_equals_5) // average intermediates to tower and opposites + for (uint8_t axis = 1; axis < 13; axis += 2) z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; - S1 += z_at_pt[axis]; - S2 += sq(z_at_pt[axis]); - N++; - } - zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane + S1 += z_at_pt[0]; + S2 += sq(z_at_pt[0]); + N++; + if (!pp_equals_1) // std dev from zero plane + for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13; axis += (pp_equals_2 ? 4 : 2)) { + S1 += z_at_pt[axis]; + S2 += sq(z_at_pt[axis]); + N++; + } + zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // Solve matrices @@ -5221,28 +5239,33 @@ inline void gcode_G28() { COPY(e_old, endstop_adj); dr_old = delta_radius; zh_old = home_offset[Z_AXIS]; + alpha_old = delta_tower_angle_trim[A_AXIS]; + beta_old = delta_tower_angle_trim[B_AXIS]; - float e_delta[XYZ] = { 0.0 }, r_delta = 0.0; - - #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) - float h_f_new = 0.0, r_f_new = 0.0 , t_f_new = 0.0, - h_diff = 0.00, r_diff = 0.00; - #endif + float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, + t_alpha = 0.0, t_beta = 0.0; + const float r_diff = delta_radius - delta_calibration_radius, + h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm + r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm + a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm #define ZP(N,I) ((N) * z_at_pt[I]) #define Z1000(I) ZP(1.00, I) - #define Z1050(I) ZP(H_FACTOR, I) - #define Z0700(I) ZP((H_FACTOR) * 2.0 / 3.00, I) - #define Z0350(I) ZP((H_FACTOR) / 3.00, I) - #define Z0175(I) ZP((H_FACTOR) / 6.00, I) - #define Z2250(I) ZP(R_FACTOR, I) - #define Z0750(I) ZP((R_FACTOR) / 3.00, I) - #define Z0375(I) ZP((R_FACTOR) / 6.00, I) - - switch (probe_points) { + #define Z1050(I) ZP(h_factor, I) + #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I) + #define Z0350(I) ZP(h_factor / 3.00, I) + #define Z0175(I) ZP(h_factor / 6.00, I) + #define Z2250(I) ZP(r_factor, I) + #define Z0750(I) ZP(r_factor / 3.00, I) + #define Z0375(I) ZP(r_factor / 6.00, I) + #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I) + #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I) + + switch (probe_mode) { + case -1: + test_precision = 0.00; case 1: LOOP_XYZ(i) e_delta[i] = Z1000(0); - r_delta = 0.00; break; case 2: @@ -5264,67 +5287,43 @@ inline void gcode_G28() { e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3); e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3); r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3); + + if (probe_mode > 0) { // negative disables tower angles + t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3); + t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3); + } break; } - #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) - // Calculate h & r factors - if (verbose_level == 3) { - LOOP_XYZ(axis) h_f_new += e_delta[axis] / 3; - r_f_new = r_delta; - h_diff = (1.0 / H_FACTOR) * (h_f_old - h_f_new) / h_f_old; - if (h_diff < h_diff_min && h_diff > 0.9) h_diff_min = h_diff; - if (r_f_old != 0) - r_diff = ( 0.0301 * sq(R_FACTOR) * R_FACTOR - + 0.311 * sq(R_FACTOR) - + 1.1493 * R_FACTOR - + 1.7952 - ) * (r_f_old - r_f_new) / r_f_old; - if (r_diff > r_diff_max && r_diff < 0.4444) r_diff_max = r_diff; - SERIAL_EOL; - - h_f_old = h_f_new; - r_f_old = r_f_new; - } - #endif // DELTA_CALIBRATE_EXPERT_MODE - - // Adjust delta_height and endstops by the max amount LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis]; delta_radius += r_delta; + delta_tower_angle_trim[A_AXIS] += t_alpha; + delta_tower_angle_trim[B_AXIS] -= t_beta; - const float z_temp = MAX3(endstop_adj[0], endstop_adj[1], endstop_adj[2]); + // adjust delta_height and endstops by the max amount + const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]); home_offset[Z_AXIS] -= z_temp; LOOP_XYZ(i) endstop_adj[i] -= z_temp; recalc_delta_settings(delta_radius, delta_diagonal_rod); } - else { // !iterate - // step one back + else { // step one back COPY(endstop_adj, e_old); delta_radius = dr_old; home_offset[Z_AXIS] = zh_old; + delta_tower_angle_trim[A_AXIS] = alpha_old; + delta_tower_angle_trim[B_AXIS] = beta_old; recalc_delta_settings(delta_radius, delta_diagonal_rod); } - // print report + // print report - #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) - if (verbose_level == 3) { - const float r_factor = 22.902 * sq(r_diff_max) * r_diff_max - - 44.988 * sq(r_diff_max) - + 31.697 * r_diff_max - - 9.4439; - SERIAL_PROTOCOLPAIR("h_factor:", 1.0 / h_diff_min); - SERIAL_PROTOCOLPAIR(" r_factor:", r_factor); - SERIAL_EOL; - } - #endif - if (verbose_level == 2) { - SERIAL_PROTOCOLPGM(". c:"); + if (verbose_level != 1) { + SERIAL_PROTOCOLPGM(". c:"); if (z_at_pt[0] > 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[0], 2); - if (probe_points > 1) { + if (probe_mode == 2 || pp_greather_2) { SERIAL_PROTOCOLPGM(" x:"); if (z_at_pt[1] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[1], 2); @@ -5335,9 +5334,12 @@ inline void gcode_G28() { if (z_at_pt[9] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[9], 2); } - if (probe_points > 0) SERIAL_EOL; - if (probe_points > 2 || probe_points == -2) { - if (probe_points > 2) SERIAL_PROTOCOLPGM(". "); + if (probe_mode != -2) SERIAL_EOL; + if (probe_mode == -2 || pp_greather_2) { + if (pp_greather_2) { + SERIAL_CHAR('.'); + SERIAL_PROTOCOL_SP(13); + } SERIAL_PROTOCOLPGM(" yz:"); if (z_at_pt[7] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(z_at_pt[7], 2); @@ -5350,25 +5352,27 @@ inline void gcode_G28() { SERIAL_EOL; } } - if (test_precision != 0.0) { // !forced end - if (zero_std_dev >= test_precision) { + if (test_precision != 0.0) { // !forced end + if (zero_std_dev >= test_precision) { // end iterations SERIAL_PROTOCOLPGM("Calibration OK"); - SERIAL_PROTOCOLLNPGM(" rolling back 1"); - LCD_MESSAGEPGM("Calibration OK"); + SERIAL_PROTOCOL_SP(36); + SERIAL_PROTOCOLPGM("rolling back."); SERIAL_EOL; + LCD_MESSAGEPGM("Calibration OK"); } - else { // !end iterations + else { // !end iterations char mess[15] = "No convergence"; if (iterations < 31) sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations); SERIAL_PROTOCOL(mess); - SERIAL_PROTOCOLPGM(" std dev:"); + SERIAL_PROTOCOL_SP(36); + SERIAL_PROTOCOLPGM("std dev:"); SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_EOL; lcd_setstatus(mess); } - SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); - if (abs(probe_points) > 1) { + SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); + if (!pp_equals_1) { SERIAL_PROTOCOLPGM(" Ex:"); if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2); @@ -5381,23 +5385,38 @@ inline void gcode_G28() { SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); } SERIAL_EOL; + if (probe_mode > 2) { // negative disables tower angles + SERIAL_PROTOCOLPGM(".Tower angle : Tx:"); + if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+'); + SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2); + SERIAL_PROTOCOLPGM(" Ty:"); + if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+'); + SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2); + SERIAL_PROTOCOLPGM(" Tz:+0.00"); + SERIAL_EOL; + } if (zero_std_dev >= test_precision) - SERIAL_PROTOCOLLNPGM("Save with M500"); + serialprintPGM(save_message); + SERIAL_EOL; } - else { // forced end - #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) - if (verbose_level == 3) - SERIAL_PROTOCOLLNPGM("Copy to Configuration_adv.h"); - else - #endif - { - SERIAL_PROTOCOLPGM("End DRY-RUN std dev:"); - SERIAL_PROTOCOL_F(zero_std_dev, 3); - SERIAL_EOL; - } + else { // forced end + if (verbose_level == 0) { + SERIAL_PROTOCOLPGM("End DRY-RUN"); + SERIAL_PROTOCOL_SP(39); + SERIAL_PROTOCOLPGM("std dev:"); + SERIAL_PROTOCOL_F(zero_std_dev, 3); + SERIAL_EOL; + } + else { + SERIAL_PROTOCOLLNPGM("Calibration OK"); + LCD_MESSAGEPGM("Calibration OK"); + SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); + SERIAL_EOL; + serialprintPGM(save_message); + SERIAL_EOL; + } } - clean_up_after_endstop_or_probe_move(); stepper.synchronize(); gcode_G28(); @@ -7620,12 +7639,13 @@ inline void gcode_M205() { if (code_seen('L')) delta_diagonal_rod = code_value_linear_units(); if (code_seen('R')) delta_radius = code_value_linear_units(); if (code_seen('S')) delta_segments_per_second = code_value_float(); - if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units(); - if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units(); - if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units(); - if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units(); - if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units(); - if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units(); + if (code_seen('B')) delta_calibration_radius = code_value_float(); + if (code_seen('X')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units(); + if (code_seen('Y')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units(); + if (code_seen('Z')) { // rotate all 3 axis for Z = 0 + delta_tower_angle_trim[A_AXIS] -= code_value_linear_units(); + delta_tower_angle_trim[B_AXIS] -= code_value_linear_units(); + } recalc_delta_settings(delta_radius, delta_diagonal_rod); } /** @@ -7653,6 +7673,10 @@ inline void gcode_M205() { SERIAL_ECHOLNPGM("<<< gcode_M666"); } #endif + // normalize endstops so all are <=0; set the residue to delta height + const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]); + home_offset[Z_AXIS] -= z_temp; + LOOP_XYZ(i) endstop_adj[i] -= z_temp; } #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS) @@ -8564,7 +8588,7 @@ inline void gcode_M503() { if (!isnan(last_zoffset)) { - #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) + #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA) const float diff = zprobe_zoffset - last_zoffset; #endif @@ -8586,6 +8610,10 @@ inline void gcode_M503() { #else UNUSED(no_babystep); #endif + + #if ENABLED(DELTA) // correct the delta_height + home_offset[Z_AXIS] -= diff; + #endif } last_zoffset = zprobe_zoffset; @@ -10651,15 +10679,17 @@ void ok_to_send() { * settings have been changed (e.g., by M665). */ void recalc_delta_settings(float radius, float diagonal_rod) { - delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower - delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); - delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower - delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); - delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower - delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); - delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]); - delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]); - delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]); + const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER, + drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER; + delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower + delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); + delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower + delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); + delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower + delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]); + delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]); + delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]); + delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]); } #if ENABLED(DELTA_FAST_SQRT) diff --git a/Marlin/configuration_store.cpp b/Marlin/configuration_store.cpp index 61e6e9910..681c01a9a 100755 --- a/Marlin/configuration_store.cpp +++ b/Marlin/configuration_store.cpp @@ -42,7 +42,7 @@ #define EEPROM_OFFSET 100 /** - * V33 EEPROM Layout: + * V35 EEPROM Layout: * * 100 Version (char x4) * 104 EEPROM Checksum (uint16_t) @@ -97,12 +97,10 @@ * 360 M665 R delta_radius (float) * 364 M665 L delta_diagonal_rod (float) * 368 M665 S delta_segments_per_second (float) - * 372 M665 A delta_diagonal_rod_trim[A] (float) - * 376 M665 B delta_diagonal_rod_trim[B] (float) - * 380 M665 C delta_diagonal_rod_trim[C] (float) - * 384 M665 I delta_tower_angle_trim[A] (float) - * 388 M665 J delta_tower_angle_trim[B] (float) - * 392 M665 K delta_tower_angle_trim[C] (float) + * 372 M665 B delta_calibration_radius (float) + * 376 M665 X delta_tower_angle_trim[A] (float) + * 380 M665 Y delta_tower_angle_trim[B] (float) + * --- M665 Z delta_tower_angle_trim[C] (float) is always 0.0 * * Z_DUAL_ENDSTOPS: 48 bytes * 348 M666 Z z_endstop_adj (float) @@ -428,8 +426,10 @@ void MarlinSettings::postprocess() { EEPROM_WRITE(delta_radius); // 1 float EEPROM_WRITE(delta_diagonal_rod); // 1 float EEPROM_WRITE(delta_segments_per_second); // 1 float - EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats - EEPROM_WRITE(delta_tower_angle_trim); // 3 floats + EEPROM_WRITE(delta_calibration_radius); // 1 float + EEPROM_WRITE(delta_tower_angle_trim); // 2 floats + dummy = 0.0f; + for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); #elif ENABLED(Z_DUAL_ENDSTOPS) EEPROM_WRITE(z_endstop_adj); // 1 float dummy = 0.0f; @@ -802,8 +802,10 @@ void MarlinSettings::postprocess() { EEPROM_READ(delta_radius); // 1 float EEPROM_READ(delta_diagonal_rod); // 1 float EEPROM_READ(delta_segments_per_second); // 1 float - EEPROM_READ(delta_diagonal_rod_trim); // 3 floats - EEPROM_READ(delta_tower_angle_trim); // 3 floats + EEPROM_READ(delta_calibration_radius); // 1 float + EEPROM_READ(delta_tower_angle_trim); // 2 floats + dummy = 0.0f; + for (uint8_t q=3; q--;) EEPROM_READ(dummy); #elif ENABLED(Z_DUAL_ENDSTOPS) EEPROM_READ(z_endstop_adj); dummy = 0.0f; @@ -1079,14 +1081,14 @@ void MarlinSettings::reset() { #if ENABLED(DELTA) const float adj[ABC] = DELTA_ENDSTOP_ADJ, - drt[ABC] = { DELTA_DIAGONAL_ROD_TRIM_TOWER_1, DELTA_DIAGONAL_ROD_TRIM_TOWER_2, DELTA_DIAGONAL_ROD_TRIM_TOWER_3 }, - dta[ABC] = { DELTA_TOWER_ANGLE_TRIM_1, DELTA_TOWER_ANGLE_TRIM_2, DELTA_TOWER_ANGLE_TRIM_3 }; + dta[ABC] = DELTA_TOWER_ANGLE_TRIM; COPY(endstop_adj, adj); delta_radius = DELTA_RADIUS; delta_diagonal_rod = DELTA_DIAGONAL_ROD; delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; - COPY(delta_diagonal_rod_trim, drt); - COPY(delta_tower_angle_trim, dta); + delta_calibration_radius = DELTA_CALIBRATION_RADIUS; + delta_tower_angle_trim[A_AXIS] = dta[A_AXIS] - dta[C_AXIS]; + delta_tower_angle_trim[B_AXIS] = dta[B_AXIS] - dta[C_AXIS]; home_offset[Z_AXIS] = 0; #elif ENABLED(Z_DUAL_ENDSTOPS) @@ -1488,19 +1490,18 @@ void MarlinSettings::reset() { SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(endstop_adj[Z_AXIS])); if (!forReplay) { CONFIG_ECHO_START; - SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> ABC<diagonal_rod_[123]_trim>"); + SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod)); SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius)); SERIAL_ECHOPAIR(" H", LINEAR_UNIT(DELTA_HEIGHT + home_offset[Z_AXIS])); SERIAL_ECHOPAIR(" S", delta_segments_per_second); - SERIAL_ECHOPAIR(" A", LINEAR_UNIT(delta_diagonal_rod_trim[A_AXIS])); - SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_diagonal_rod_trim[B_AXIS])); - SERIAL_ECHOPAIR(" C", LINEAR_UNIT(delta_diagonal_rod_trim[C_AXIS])); - SERIAL_ECHOPAIR(" I", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS])); - SERIAL_ECHOPAIR(" J", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS])); - SERIAL_ECHOLNPAIR(" K", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS])); + SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius)); + SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS])); + SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS])); + SERIAL_ECHOPAIR(" Z", 0.00); + SERIAL_EOL; #elif ENABLED(Z_DUAL_ENDSTOPS) if (!forReplay) { CONFIG_ECHO_START; diff --git a/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h b/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h index 43a608597..cd49149ea 100644 --- a/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h +++ b/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h @@ -1,4 +1,4 @@ -/** +/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * @@ -431,53 +431,47 @@ // and processor overload (too many expensive sqrt calls). #define DELTA_SEGMENTS_PER_SECOND 160 + // NOTE NB all values for DELTA_* values MUST be floating point, so always have a decimal point in them + // Center-to-center distance of the holes in the diagonal push rods. #define DELTA_DIAGONAL_ROD 218.0 // mm - // Horizontal offset from middle of printer to smooth rod center. - //#define DELTA_SMOOTH_ROD_OFFSET 150.0 // mm - - // Horizontal offset of the universal joints on the end effector. - //#define DELTA_EFFECTOR_OFFSET 24.0 // mm - - // Horizontal offset of the universal joints on the carriages. - //#define DELTA_CARRIAGE_OFFSET 22.0 // mm - // Horizontal distance bridged by diagonal push rods when effector is centered. - #define DELTA_RADIUS 100.59 //mm // get this value from auto calibrate + #define DELTA_RADIUS 100.00 //mm // get this value from auto calibrate - // height from z=0.00 to home position - #define DELTA_HEIGHT 298.95 // get this value from auto calibrate + // height from z=0 to home position + #define DELTA_HEIGHT 295.00 // get this value from auto calibrate - use G33 P1 A at 1st time calibration // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). - #define DELTA_PRINTABLE_RADIUS 90.0 + #define DELTA_PRINTABLE_RADIUS 85.0 // Delta calibration menu + // uncomment to add three points calibration menu option. // See http://minow.blogspot.com/index.html#4918805519571907051 #define DELTA_CALIBRATION_MENU + // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled + #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm + // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) #define DELTA_AUTO_CALIBRATION #if ENABLED(DELTA_AUTO_CALIBRATION) - #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) - #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points + #define DELTA_CALIBRATION_DEFAULT_POINTS 4 // set the default number of probe points : n*n (-7 -> +7) #endif // After homing move down to a height where XY movement is unconstrained #define DELTA_HOME_TO_SAFE_ZONE - #define DELTA_ENDSTOP_ADJ { -0.05, -0.00, -0.02 } // get these from auto calibrate + #define DELTA_ENDSTOP_ADJ { 0, 0, 0 } // get these from auto calibrate // Trim adjustments for individual towers - #define DELTA_RADIUS_TRIM_TOWER_1 0.0 - #define DELTA_RADIUS_TRIM_TOWER_2 0.0 - #define DELTA_RADIUS_TRIM_TOWER_3 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 - #define DELTA_TOWER_ANGLE_TRIM_1 0.0 - #define DELTA_TOWER_ANGLE_TRIM_2 0.0 - #define DELTA_TOWER_ANGLE_TRIM_3 0.0 + // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0 + // measured in degrees anticlockwise looking from above the printer + #define DELTA_TOWER_ANGLE_TRIM { 0, 0, 0 } // get these from auto calibrate + + // delta radius and diaginal rod adjustments measured in mm + //#define DELTA_RADIUS_TRIM_TOWER {0, 0, 0} + //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0, 0, 0} #endif @@ -514,7 +508,7 @@ // Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup). #define X_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop. #define Y_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop. -#define Z_MIN_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop. +#define Z_MIN_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop. #define X_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop. #define Y_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop. #define Z_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop. @@ -696,8 +690,8 @@ * (0,0) */ #define X_PROBE_OFFSET_FROM_EXTRUDER 0 // X offset: -left +right [of the nozzle] -#define Y_PROBE_OFFSET_FROM_EXTRUDER 0 // Y offset: -front +behind [the nozzle] -#define Z_PROBE_OFFSET_FROM_EXTRUDER 0.25 // Z offset: -below +above [the nozzle] +#define Y_PROBE_OFFSET_FROM_EXTRUDER 0 // Y offset: -front +behind [the nozzle] +#define Z_PROBE_OFFSET_FROM_EXTRUDER 0.10 // Z offset: -below +above [the nozzle] // X and Y axis travel speed (mm/m) between probes #define XY_PROBE_SPEED 5000 @@ -706,7 +700,7 @@ #define Z_PROBE_SPEED_FAST HOMING_FEEDRATE_Z // Speed for the "accurate" probe of each point -#define Z_PROBE_SPEED_SLOW (Z_PROBE_SPEED_FAST / 4) +#define Z_PROBE_SPEED_SLOW (Z_PROBE_SPEED_FAST) / 6 // Use double touch for probing //#define PROBE_DOUBLE_TOUCH @@ -775,8 +769,8 @@ * Example: `M851 Z-5` with a CLEARANCE of 4 => 9mm from bed to nozzle. * But: `M851 Z+1` with a CLEARANCE of 2 => 2mm from bed to nozzle. */ -#define Z_CLEARANCE_DEPLOY_PROBE 10 // Z Clearance for Deploy/Stow -#define Z_CLEARANCE_BETWEEN_PROBES 3 // Z Clearance between probe points +#define Z_CLEARANCE_DEPLOY_PROBE 5 // Z Clearance for Deploy/Stow +#define Z_CLEARANCE_BETWEEN_PROBES 2 // Z Clearance between probe points // For M851 give a range for adjusting the Z probe offset #define Z_PROBE_OFFSET_RANGE_MIN -20 @@ -808,11 +802,11 @@ // @section machine // Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way. -#define INVERT_X_DIR true +#define INVERT_X_DIR true // DELTA does not invert #define INVERT_Y_DIR true #define INVERT_Z_DIR true -// Enable this option for Toshiba stepper drivers +// Enable this option for Toshiba steppers drivers //#define CONFIG_STEPPERS_TOSHIBA // @section extruder @@ -910,7 +904,7 @@ */ //#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_LINEAR -#define AUTO_BED_LEVELING_BILINEAR +//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_UBL //#define MESH_BED_LEVELING @@ -931,8 +925,7 @@ #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR) // Set the number of grid points per dimension. - // Works best with 5 or more points in each dimension. - #define GRID_MAX_POINTS_X 9 + #define GRID_MAX_POINTS_X 7 #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X // Set the boundaries for probing (where the probe can reach). @@ -943,12 +936,13 @@ #define BACK_PROBE_BED_POSITION DELTA_PROBEABLE_RADIUS // The Z probe minimum outer margin (to validate G29 parameters). - #define MIN_PROBE_EDGE 10 + #define MIN_PROBE_EDGE 20 // Probe along the Y axis, advancing X after each column //#define PROBE_Y_FIRST #if ENABLED(AUTO_BED_LEVELING_BILINEAR) + // // Experimental Subdivision of the grid by Catmull-Rom method. // Synthesizes intermediate points to produce a more detailed mesh. @@ -1098,8 +1092,8 @@ // @section temperature // Preheat Constants -#define PREHEAT_1_TEMP_HOTEND 185 -#define PREHEAT_1_TEMP_BED 70 +#define PREHEAT_1_TEMP_HOTEND 195 +#define PREHEAT_1_TEMP_BED 60 #define PREHEAT_1_FAN_SPEED 0 // Value from 0 to 255 #define PREHEAT_2_TEMP_HOTEND 240 @@ -1345,6 +1339,7 @@ // // Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu. // +// INDIVIDUAL_AXIS_HOMING_MENU is incompatible with DELTA kinematics. //#define INDIVIDUAL_AXIS_HOMING_MENU // @@ -1673,8 +1668,8 @@ #define FILAMENT_SENSOR_EXTRUDER_NUM 0 // Index of the extruder that has the filament sensor (0,1,2,3) #define MEASUREMENT_DELAY_CM 14 // (cm) The distance from the filament sensor to the melting chamber - #define MEASURED_UPPER_LIMIT 3.30 // (mm) Upper limit used to validate sensor reading - #define MEASURED_LOWER_LIMIT 1.90 // (mm) Lower limit used to validate sensor reading + #define MEASURED_UPPER_LIMIT 1.95 // (mm) Upper limit used to validate sensor reading + #define MEASURED_LOWER_LIMIT 1.20 // (mm) Lower limit used to validate sensor reading #define MAX_MEASUREMENT_DELAY 20 // (bytes) Buffer size for stored measurements (1 byte per cm). Must be larger than MEASUREMENT_DELAY_CM. #define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA // Set measured to nominal initially diff --git a/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration_adv.h b/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration_adv.h index 7a83ecc03..f7c38bdb1 100644 --- a/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration_adv.h +++ b/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration_adv.h @@ -419,25 +419,6 @@ // Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS #define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO -//=========================================================================== -//============================== Delta Settings ============================= -//=========================================================================== - -#if ENABLED(DELTA_AUTO_CALIBRATION) - /** - * Set the height short (H-10) with M665 Hx.xx. - * Set the delta_radius offset (R-5, R-10, R+5, R+10) with M665 Rx.xx. - * Run G33 Cx V3 (C2, C-2) with different values for C and R - * Take the average for R_FACTOR and maximum for H_FACTOR. - * Run the tests with default values!!! - */ - //#define DELTA_CALIBRATE_EXPERT_MODE - - // Remove the comments of the folling 2 lines to overide default values - #define H_FACTOR 1.02 // 1.0 < H_FACTOR < 1.11, default 1.00 - #define R_FACTOR -3.95 // -6.7 < R_FACTOR < -2.25, default -2.25 -#endif - //=========================================================================== //=============================Additional Features=========================== //=========================================================================== diff --git a/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h b/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h index afa16fb85..623598ace 100644 --- a/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h +++ b/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h @@ -444,10 +444,10 @@ #define DELTA_CARRIAGE_OFFSET 22.0 // mm // Horizontal distance bridged by diagonal push rods when effector is centered. - #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-(DELTA_EFFECTOR_OFFSET)-(DELTA_CARRIAGE_OFFSET)) + #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate // height from z=0.00 to home position - #define DELTA_HEIGHT 280 // get this value from auto calibrate + #define DELTA_HEIGHT 280 // get this value from auto calibrate - use G33 C-1 at 1st time calibration // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). #define DELTA_PRINTABLE_RADIUS 85.0 @@ -457,28 +457,28 @@ // See http://minow.blogspot.com/index.html#4918805519571907051 //#define DELTA_CALIBRATION_MENU + // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled + #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm + // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) //#define DELTA_AUTO_CALIBRATION #if ENABLED(DELTA_AUTO_CALIBRATION) - #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) - #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points + #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-7 -> +7) #endif // After homing move down to a height where XY movement is unconstrained //#define DELTA_HOME_TO_SAFE_ZONE - //#define DELTA_ENDSTOP_ADJ { 0, 0, 0 } + #define DELTA_ENDSTOP_ADJ { 0, 0, 0 } // get these from auto calibrate // Trim adjustments for individual towers - #define DELTA_RADIUS_TRIM_TOWER_1 0.0 - #define DELTA_RADIUS_TRIM_TOWER_2 0.0 - #define DELTA_RADIUS_TRIM_TOWER_3 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 - #define DELTA_TOWER_ANGLE_TRIM_1 0.0 - #define DELTA_TOWER_ANGLE_TRIM_2 0.0 - #define DELTA_TOWER_ANGLE_TRIM_3 0.0 + // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0 + // measured in degrees anticlockwise looking from above the printer + #define DELTA_TOWER_ANGLE_TRIM { 0, 0, 0 } // get these from auto calibrate + + // delta radius and diaginal rod adjustments measured in mm + //#define DELTA_RADIUS_TRIM_TOWER {0, 0, 0} + //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0, 0, 0} #endif diff --git a/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration_adv.h b/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration_adv.h index 70cf63ac9..8d6816910 100644 --- a/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration_adv.h +++ b/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration_adv.h @@ -1,4 +1,4 @@ -/** +/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * @@ -419,25 +419,6 @@ // Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS #define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO -//=========================================================================== -//============================== Delta Settings ============================= -//=========================================================================== - -#if ENABLED(DELTA_AUTO_CALIBRATION) - /** - * Set the height short (H-10) with M665 Hx.xx. - * Set the delta_radius offset (R-5, R-10, R+5, R+10) with M665 Rx.xx. - * Run G33 Cx V3 (C2, C-2) with different values for C and R - * Take the average for R_FACTOR and maximum for H_FACTOR. - * Run the tests with default values!!! - */ - //#define DELTA_CALIBRATE_EXPERT_MODE - - // Remove the comments of the folling 2 lines to overide default values - #define H_FACTOR 1.02 // 1.0 < H_FACTOR < 1.11, default 1.00 - #define R_FACTOR -3.95 // -6.7 < R_FACTOR < -2.25, default -2.25 -#endif - //=========================================================================== //=============================Additional Features=========================== //=========================================================================== diff --git a/Marlin/example_configurations/delta/generic/Configuration.h b/Marlin/example_configurations/delta/generic/Configuration.h index 25efc6fa1..60589f03b 100644 --- a/Marlin/example_configurations/delta/generic/Configuration.h +++ b/Marlin/example_configurations/delta/generic/Configuration.h @@ -434,10 +434,10 @@ #define DELTA_CARRIAGE_OFFSET 18.0 // mm // Horizontal distance bridged by diagonal push rods when effector is centered. - #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-(DELTA_EFFECTOR_OFFSET)-(DELTA_CARRIAGE_OFFSET)) + #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate // height from z=0.00 to home position // height from z=0.00 to home position - #define DELTA_HEIGHT 250 // get this value from auto calibrate + #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 C-1 at 1st time calibration // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). #define DELTA_PRINTABLE_RADIUS 140.0 @@ -446,28 +446,28 @@ // See http://minow.blogspot.com/index.html#4918805519571907051 //#define DELTA_CALIBRATION_MENU + // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled + #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 28) // mm + // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) //#define DELTA_AUTO_CALIBRATION #if ENABLED(DELTA_AUTO_CALIBRATION) - #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) - #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points + #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-7 -> +7) #endif // After homing move down to a height where XY movement is unconstrained - #define DELTA_HOME_TO_SAFE_ZONE + //#define DELTA_HOME_TO_SAFE_ZONE - //#define DELTA_ENDSTOP_ADJ { 0, 0, 0 } + #define DELTA_ENDSTOP_ADJ { 0, 0, 0 } // get these from auto calibrate // Trim adjustments for individual towers - #define DELTA_RADIUS_TRIM_TOWER_1 0.0 - #define DELTA_RADIUS_TRIM_TOWER_2 0.0 - #define DELTA_RADIUS_TRIM_TOWER_3 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 - #define DELTA_TOWER_ANGLE_TRIM_1 0.0 - #define DELTA_TOWER_ANGLE_TRIM_2 0.0 - #define DELTA_TOWER_ANGLE_TRIM_3 0.0 + // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0 + // measured in degrees anticlockwise looking from above the printer + #define DELTA_TOWER_ANGLE_TRIM { 0, 0, 0 } // get these from auto calibrate + + // delta radius and diaginal rod adjustments measured in mm + //#define DELTA_RADIUS_TRIM_TOWER {0, 0, 0} + //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0, 0, 0} #endif diff --git a/Marlin/example_configurations/delta/generic/Configuration_adv.h b/Marlin/example_configurations/delta/generic/Configuration_adv.h index 1d72030bd..3de925ef5 100644 --- a/Marlin/example_configurations/delta/generic/Configuration_adv.h +++ b/Marlin/example_configurations/delta/generic/Configuration_adv.h @@ -1,4 +1,4 @@ -/** +/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * @@ -419,25 +419,6 @@ // Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS #define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO -//=========================================================================== -//============================== Delta Settings ============================= -//=========================================================================== - -#if ENABLED(DELTA_AUTO_CALIBRATION) - /** - * Set the height short (H-10) with M665 Hx.xx. - * Set the delta_radius offset (R-5, R-10, R+5, R+10) with M665 Rx.xx. - * Run G33 Cx V3 (C2, C-2) with different values for C and R - * Take the average for R_FACTOR and maximum for H_FACTOR. - * Run the tests with default values!!! - */ - //#define DELTA_CALIBRATE_EXPERT_MODE - - // Remove the comments of the folling 2 lines to overide default values - //#define H_FACTOR 1.02 // 1.0 < H_FACTOR < 1.11, default 1.00 - //#define R_FACTOR -3.95 // -6.7 < R_FACTOR < -2.25, default -2.25 -#endif - //=========================================================================== //=============================Additional Features=========================== //=========================================================================== diff --git a/Marlin/example_configurations/delta/kossel_mini/Configuration.h b/Marlin/example_configurations/delta/kossel_mini/Configuration.h index 75f6d21e1..8d6c59d7e 100644 --- a/Marlin/example_configurations/delta/kossel_mini/Configuration.h +++ b/Marlin/example_configurations/delta/kossel_mini/Configuration.h @@ -434,10 +434,10 @@ #define DELTA_CARRIAGE_OFFSET 19.5 // mm // Horizontal distance bridged by diagonal push rods when effector is centered. - #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-(DELTA_EFFECTOR_OFFSET)-(DELTA_CARRIAGE_OFFSET)) + #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate // height from z=0.00 to home position - #define DELTA_HEIGHT 250 // get this value from auto calibrate + #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 C-1 at 1st time calibration // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). #define DELTA_PRINTABLE_RADIUS 90.0 @@ -446,28 +446,28 @@ // See http://minow.blogspot.com/index.html#4918805519571907051 //#define DELTA_CALIBRATION_MENU + // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled + #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 18) // mm + // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) //#define DELTA_AUTO_CALIBRATION #if ENABLED(DELTA_AUTO_CALIBRATION) - #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) - #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points + #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-7 -> +7) #endif // After homing move down to a height where XY movement is unconstrained - #define DELTA_HOME_TO_SAFE_ZONE + //#define DELTA_HOME_TO_SAFE_ZONE - //#define DELTA_ENDSTOP_ADJ { 0, 0, 0 } + #define DELTA_ENDSTOP_ADJ { 0, 0, 0 } // get these from auto calibrate // Trim adjustments for individual towers - #define DELTA_RADIUS_TRIM_TOWER_1 0.0 - #define DELTA_RADIUS_TRIM_TOWER_2 0.0 - #define DELTA_RADIUS_TRIM_TOWER_3 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 - #define DELTA_TOWER_ANGLE_TRIM_1 0.0 - #define DELTA_TOWER_ANGLE_TRIM_2 0.0 - #define DELTA_TOWER_ANGLE_TRIM_3 0.0 + // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0 + // measured in degrees anticlockwise looking from above the printer + #define DELTA_TOWER_ANGLE_TRIM { 0, 0, 0 } // get these from auto calibrate + + // delta radius and diaginal rod adjustments measured in mm + //#define DELTA_RADIUS_TRIM_TOWER {0, 0, 0} + //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0, 0, 0} #endif diff --git a/Marlin/example_configurations/delta/kossel_mini/Configuration_adv.h b/Marlin/example_configurations/delta/kossel_mini/Configuration_adv.h index 1d72030bd..3de925ef5 100644 --- a/Marlin/example_configurations/delta/kossel_mini/Configuration_adv.h +++ b/Marlin/example_configurations/delta/kossel_mini/Configuration_adv.h @@ -1,4 +1,4 @@ -/** +/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * @@ -419,25 +419,6 @@ // Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS #define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO -//=========================================================================== -//============================== Delta Settings ============================= -//=========================================================================== - -#if ENABLED(DELTA_AUTO_CALIBRATION) - /** - * Set the height short (H-10) with M665 Hx.xx. - * Set the delta_radius offset (R-5, R-10, R+5, R+10) with M665 Rx.xx. - * Run G33 Cx V3 (C2, C-2) with different values for C and R - * Take the average for R_FACTOR and maximum for H_FACTOR. - * Run the tests with default values!!! - */ - //#define DELTA_CALIBRATE_EXPERT_MODE - - // Remove the comments of the folling 2 lines to overide default values - //#define H_FACTOR 1.02 // 1.0 < H_FACTOR < 1.11, default 1.00 - //#define R_FACTOR -3.95 // -6.7 < R_FACTOR < -2.25, default -2.25 -#endif - //=========================================================================== //=============================Additional Features=========================== //=========================================================================== diff --git a/Marlin/example_configurations/delta/kossel_pro/Configuration.h b/Marlin/example_configurations/delta/kossel_pro/Configuration.h index 91f876eaf..186b616e9 100644 --- a/Marlin/example_configurations/delta/kossel_pro/Configuration.h +++ b/Marlin/example_configurations/delta/kossel_pro/Configuration.h @@ -421,10 +421,10 @@ #define DELTA_CARRIAGE_OFFSET 30.0 // mm // Horizontal distance bridged by diagonal push rods when effector is centered. - #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-(DELTA_EFFECTOR_OFFSET)-(DELTA_CARRIAGE_OFFSET)) + #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate // height from z=0.00 to home position - #define DELTA_HEIGHT 277 // get this value from auto calibrate + #define DELTA_HEIGHT 277 // get this value from auto calibrate - use G33 C-1 at 1st time calibration // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). #define DELTA_PRINTABLE_RADIUS 127.0 @@ -433,28 +433,28 @@ // See http://minow.blogspot.com/index.html#4918805519571907051 //#define DELTA_CALIBRATION_MENU + // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled + #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 25.4) // mm + // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) //#define DELTA_AUTO_CALIBRATION #if ENABLED(DELTA_AUTO_CALIBRATION) - #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) - #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points + #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-7 -> +7) #endif // After homing move down to a height where XY movement is unconstrained - #define DELTA_HOME_TO_SAFE_ZONE + //#define DELTA_HOME_TO_SAFE_ZONE - //#define DELTA_ENDSTOP_ADJ { 0, 0, 0 } + #define DELTA_ENDSTOP_ADJ { 0, 0, 0 } // get these from auto calibrate // Trim adjustments for individual towers - #define DELTA_RADIUS_TRIM_TOWER_1 0.0 - #define DELTA_RADIUS_TRIM_TOWER_2 0.0 - #define DELTA_RADIUS_TRIM_TOWER_3 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 - #define DELTA_TOWER_ANGLE_TRIM_1 0.0 - #define DELTA_TOWER_ANGLE_TRIM_2 0.0 - #define DELTA_TOWER_ANGLE_TRIM_3 0.0 + // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0 + // measured in degrees anticlockwise looking from above the printer + #define DELTA_TOWER_ANGLE_TRIM { 0, 0, 0 } // get these from auto calibrate + + // delta radius and diaginal rod adjustments measured in mm + //#define DELTA_RADIUS_TRIM_TOWER {0, 0, 0} + //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0, 0, 0} #endif diff --git a/Marlin/example_configurations/delta/kossel_pro/Configuration_adv.h b/Marlin/example_configurations/delta/kossel_pro/Configuration_adv.h index ca691bcf6..5c0f51690 100644 --- a/Marlin/example_configurations/delta/kossel_pro/Configuration_adv.h +++ b/Marlin/example_configurations/delta/kossel_pro/Configuration_adv.h @@ -1,4 +1,4 @@ -/** +/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * @@ -424,26 +424,6 @@ // Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS #define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO -//=========================================================================== -//============================== Delta Settings ============================= -//=========================================================================== - -#if ENABLED(DELTA_AUTO_CALIBRATION) - /** - * Set the height short (H-10) with M665 Hx.xx. - * Set the delta_radius offset (R-5, R-10, R+5, R+10) with M665 Rx.xx. - * Run G33 Cx V3 (C2, C-2) with different values for C and R - * Take the average for R_FACTOR and maximum for H_FACTOR. - * Run the tests with default values!!! - */ - //#define DELTA_CALIBRATE_EXPERT_MODE - - // Remove the comments of the folling 2 lines to overide default values - //#define H_FACTOR 1.02 // 1.0 < H_FACTOR < 1.11, default 1.00 - //#define R_FACTOR -3.95 // -6.7 < R_FACTOR < -2.25, default -2.25 -#endif - - //=========================================================================== //=============================Additional Features=========================== //=========================================================================== diff --git a/Marlin/example_configurations/delta/kossel_xl/Configuration.h b/Marlin/example_configurations/delta/kossel_xl/Configuration.h index 27f4d3b61..3e4db593f 100644 --- a/Marlin/example_configurations/delta/kossel_xl/Configuration.h +++ b/Marlin/example_configurations/delta/kossel_xl/Configuration.h @@ -439,10 +439,10 @@ #define DELTA_CARRIAGE_OFFSET 22.0 // mm // Horizontal distance bridged by diagonal push rods when effector is centered. - #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-(DELTA_EFFECTOR_OFFSET)-(DELTA_CARRIAGE_OFFSET) + 1) + #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate // height from z=0.00 to home position - #define DELTA_HEIGHT 380 // get this value from auto calibrate + #define DELTA_HEIGHT 380 // get this value from auto calibrate - use G33 C-1 at 1st time calibration // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). #define DELTA_PRINTABLE_RADIUS 140.0 @@ -451,28 +451,28 @@ // See http://minow.blogspot.com/index.html#4918805519571907051 //#define DELTA_CALIBRATION_MENU + // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled + #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 28) // mm + // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) //#define DELTA_AUTO_CALIBRATION #if ENABLED(DELTA_AUTO_CALIBRATION) - #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) - #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points + #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-7 -> +7) #endif // After homing move down to a height where XY movement is unconstrained - #define DELTA_HOME_TO_SAFE_ZONE + //#define DELTA_HOME_TO_SAFE_ZONE - //#define DELTA_ENDSTOP_ADJ { 0, 0, 0 } + #define DELTA_ENDSTOP_ADJ { 0, 0, 0 } // get these from auto calibrate // Trim adjustments for individual towers - #define DELTA_RADIUS_TRIM_TOWER_1 0.0 - #define DELTA_RADIUS_TRIM_TOWER_2 0.0 - #define DELTA_RADIUS_TRIM_TOWER_3 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 - #define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 - #define DELTA_TOWER_ANGLE_TRIM_1 0.0 - #define DELTA_TOWER_ANGLE_TRIM_2 0.0 - #define DELTA_TOWER_ANGLE_TRIM_3 0.0 + // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0 + // measured in degrees anticlockwise looking from above the printer + #define DELTA_TOWER_ANGLE_TRIM { 0, 0, 0 } // get these from auto calibrate + + // delta radius and diaginal rod adjustments measured in mm + //#define DELTA_RADIUS_TRIM_TOWER {0, 0, 0} + //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0, 0, 0} #endif diff --git a/Marlin/example_configurations/delta/kossel_xl/Configuration_adv.h b/Marlin/example_configurations/delta/kossel_xl/Configuration_adv.h index c19e6dfb2..c33a3a052 100644 --- a/Marlin/example_configurations/delta/kossel_xl/Configuration_adv.h +++ b/Marlin/example_configurations/delta/kossel_xl/Configuration_adv.h @@ -419,25 +419,6 @@ // Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS #define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO -//=========================================================================== -//============================== Delta Settings ============================= -//=========================================================================== - -#if ENABLED(DELTA_AUTO_CALIBRATION) - /** - * Set the height short (H-10) with M665 Hx.xx. - * Set the delta_radius offset (R-5, R-10, R+5, R+10) with M665 Rx.xx. - * Run G33 Cx V3 (C2, C-2) with different values for C and R - * Take the average for R_FACTOR and maximum for H_FACTOR. - * Run the tests with default values!!! - */ - //#define DELTA_CALIBRATE_EXPERT_MODE - - // Remove the comments of the folling 2 lines to overide default values - //#define H_FACTOR 1.02 // 1.0 < H_FACTOR < 1.11, default 1.00 - //#define R_FACTOR -3.95 // -6.7 < R_FACTOR < -2.25, default -2.25 -#endif - //=========================================================================== //=============================Additional Features=========================== //=========================================================================== diff --git a/Marlin/serial.cpp b/Marlin/serial.cpp index 9b5ae139e..797c6107a 100644 --- a/Marlin/serial.cpp +++ b/Marlin/serial.cpp @@ -32,3 +32,5 @@ void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); } + +void serial_spaces(uint8_t count) { while (count--) MYSERIAL.write(' '); } diff --git a/Marlin/serial.h b/Marlin/serial.h index b6e7add43..62e06c989 100644 --- a/Marlin/serial.h +++ b/Marlin/serial.h @@ -84,6 +84,11 @@ FORCE_INLINE void serial_echopair_P(const char* s_P, uint16_t v) { serial_echopa FORCE_INLINE void serial_echopair_P(const char* s_P, bool v) { serial_echopair_P(s_P, (int)v); } FORCE_INLINE void serial_echopair_P(const char* s_P, void *v) { serial_echopair_P(s_P, (unsigned long)v); } +void serial_spaces(uint8_t count); +#define SERIAL_ECHO_SP(C) serial_spaces(C) +#define SERIAL_ERROR_SP(C) serial_spaces(C) +#define SERIAL_PROTOCOL_SP(C) serial_spaces(C) + // // Functions for serial printing from PROGMEM. (Saves loads of SRAM.) // diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp index 39536abf0..16952ac7d 100755 --- a/Marlin/ultralcd.cpp +++ b/Marlin/ultralcd.cpp @@ -1816,20 +1816,14 @@ void kill_screen(const char* lcd_msg) { lcd_goto_screen(_lcd_calibrate_homing); } - #if ENABLED(DELTA_AUTO_CALIBRATION) - #define _DELTA_TOWER_MOVE_RADIUS DELTA_CALIBRATION_RADIUS - #else - #define _DELTA_TOWER_MOVE_RADIUS DELTA_PRINTABLE_RADIUS - #endif - // Move directly to the tower position with uninterpolated moves // If we used interpolated moves it would cause this to become re-entrant void _goto_tower_pos(const float &a) { current_position[Z_AXIS] = max(Z_HOMING_HEIGHT, Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5; line_to_current(Z_AXIS); - current_position[X_AXIS] = a < 0 ? LOGICAL_X_POSITION(X_HOME_POS) : sin(a) * -(_DELTA_TOWER_MOVE_RADIUS); - current_position[Y_AXIS] = a < 0 ? LOGICAL_Y_POSITION(Y_HOME_POS) : cos(a) * (_DELTA_TOWER_MOVE_RADIUS); + current_position[X_AXIS] = a < 0 ? LOGICAL_X_POSITION(X_HOME_POS) : cos(RADIANS(a)) * delta_calibration_radius; + current_position[Y_AXIS] = a < 0 ? LOGICAL_Y_POSITION(Y_HOME_POS) : sin(RADIANS(a)) * delta_calibration_radius; line_to_current(Z_AXIS); current_position[Z_AXIS] = 4.0; @@ -1841,17 +1835,17 @@ void kill_screen(const char* lcd_msg) { lcd_goto_screen(lcd_move_z); } - void _goto_tower_x() { _goto_tower_pos(RADIANS(120)); } - void _goto_tower_y() { _goto_tower_pos(RADIANS(240)); } - void _goto_tower_z() { _goto_tower_pos(0); } + void _goto_tower_x() { _goto_tower_pos(210); } + void _goto_tower_y() { _goto_tower_pos(330); } + void _goto_tower_z() { _goto_tower_pos(90); } void _goto_center() { _goto_tower_pos(-1); } void lcd_delta_calibrate_menu() { START_MENU(); MENU_BACK(MSG_MAIN); #if ENABLED(DELTA_AUTO_CALIBRATION) - MENU_ITEM(gcode, MSG_DELTA_AUTO_CALIBRATE, PSTR("G33 C")); - MENU_ITEM(gcode, MSG_DELTA_HEIGHT_CALIBRATE, PSTR("G33 C1")); + MENU_ITEM(gcode, MSG_DELTA_AUTO_CALIBRATE, PSTR("G33")); + MENU_ITEM(gcode, MSG_DELTA_HEIGHT_CALIBRATE, PSTR("G33 P1 A")); #endif MENU_ITEM(submenu, MSG_AUTO_HOME, _lcd_delta_calibrate_home); if (axis_homed[Z_AXIS]) {