diff --git a/Marlin/G26_Mesh_Validation_Tool.cpp b/Marlin/G26_Mesh_Validation_Tool.cpp
new file mode 100644
index 000000000..5cda27f05
--- /dev/null
+++ b/Marlin/G26_Mesh_Validation_Tool.cpp
@@ -0,0 +1,1001 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see .
+ *
+ */
+
+/**
+ * Marlin Firmware -- G26 - Mesh Validation Tool
+ */
+
+#define EXTRUSION_MULTIPLIER 1.0 // This is too much clutter for the main Configuration.h file But
+#define RETRACTION_MULTIPLIER 1.0 // some user have expressed an interest in being able to customize
+#define NOZZLE 0.3 // these numbers for thier printer so they don't need to type all
+#define FILAMENT 1.75 // the options every time they do a Mesh Validation Print.
+#define LAYER_HEIGHT 0.2
+#define PRIME_LENGTH 10.0 // So, we put these number in an easy to find and change place.
+#define BED_TEMP 60.0
+#define HOTEND_TEMP 205.0
+#define OOOOZE_AMOUNT 0.3
+
+#include "Marlin.h"
+#include "Configuration.h"
+#include "planner.h"
+#include "stepper.h"
+#include "temperature.h"
+#include "UBL.h"
+#include "ultralcd.h"
+
+#if ENABLED(AUTO_BED_LEVELING_UBL)
+
+ #define SIZE_OF_INTERSECTION_CIRCLES 5
+ #define SIZE_OF_CROSS_HAIRS 3 // cross hairs inside the circle. This number should be
+ // less than SIZE_OR_INTERSECTION_CIRCLES
+
+ /**
+ * Roxy's G26 Mesh Validation Tool
+ *
+ * G26 Is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
+ * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
+ * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
+ * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
+ * the intersections of those lines (respectively).
+ *
+ * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
+ * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
+ * the user can specify the X and Y position of interest with command parameters. This allows the user to
+ * focus on a particular area of the Mesh where attention is needed.
+ *
+ * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
+ *
+ * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
+ * as the base for any distance comparison.
+ *
+ * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
+ * command to see how well a Mesh as been adjusted to match a print surface. In order to do
+ * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
+ * alters the command's normal behaviour and disables the Unified Bed Leveling System even if
+ * it is on.
+ *
+ * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
+ *
+ * F # Filament Used to specify the diameter of the filament being used. If not specified
+ * 1.75mm filament is assumed. If you are not getting acceptable results by using the
+ * 'correct' numbers, you can scale this number up or down a little bit to change the amount
+ * of filament that is being extruded during the printing of the various lines on the bed.
+ *
+ * K Keep-On Keep the heaters turned on at the end of the command.
+ *
+ * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
+ *
+ * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
+ * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
+ *
+ * N # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
+ *
+ * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
+ * is over kill, but using this parameter will let you get the very first 'cicle' perfect
+ * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
+ * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
+ *
+ * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
+ * given, no prime action will take place. If the parameter specifies an amount, that much
+ * will be purged before continuing. If no amount is specified the command will start
+ * purging filament until the user provides an LCD Click and then it will continue with
+ * printing the Mesh. You can carefully remove the spent filament with a needle nose
+ * pliers while holding the LCD Click wheel in a depressed state.
+ *
+ * R # Random Randomize the order that the circles are drawn on the bed. The search for the closest
+ * undrawn cicle is still done. But the distance to the location for each circle has a
+ * random number of the size specified added to it. Specifying R50 will give an interesting
+ * deviation from the normal behaviour on a 10 x 10 Mesh.
+ *
+ * X # X coordinate Specify the starting location of the drawing activity.
+ *
+ * Y # Y coordinate Specify the starting location of the drawing activity.
+ */
+
+ extern int UBL_has_control_of_LCD_Panel;
+ extern float feedrate;
+ //extern bool relative_mode;
+ extern Planner planner;
+ //#if ENABLED(ULTRA_LCD)
+ extern char lcd_status_message[];
+ //#endif
+ extern float destination[];
+ extern void set_destination_to_current();
+ extern void set_current_to_destination();
+ extern float code_value_float();
+ extern bool code_value_bool();
+ extern bool code_has_value();
+ extern void lcd_init();
+ #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])) //bob
+ bool prepare_move_to_destination_cartesian();
+ void line_to_destination();
+ void line_to_destination(float );
+ void gcode_G28();
+ void sync_plan_position_e();
+ void un_retract_filament();
+ void retract_filament();
+ void look_for_lines_to_connect();
+ bool parse_G26_parameters();
+ void move_to(const float&, const float&, const float&, const float&) ;
+ void print_line_from_here_to_there(float sx, float sy, float sz, float ex, float ey, float ez);
+ bool turn_on_heaters();
+ bool prime_nozzle();
+ void chirp_at_user();
+
+ static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], Continue_with_closest = 0;
+ float G26_E_AXIS_feedrate = 0.020,
+ Random_Deviation = 0.0,
+ Layer_Height = LAYER_HEIGHT;
+
+ bool retracted = false; // We keep track of the state of the nozzle to know if it
+ // is currently retracted or not. This allows us to be
+ // less careful because mis-matched retractions and un-retractions
+ // won't leave us in a bad state.
+ #if ENABLED(ULTRA_LCD)
+ void lcd_setstatus(const char* message, bool persist);
+ #endif
+
+ float valid_trig_angle(float);
+ mesh_index_pair find_closest_circle_to_print(float, float);
+ void debug_current_and_destination(char *title);
+ void UBL_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
+ //uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF); /* needed for the old mesh_buffer_line() routine */
+
+ static float E_Pos_Delta,
+ Extrusion_Multiplier = EXTRUSION_MULTIPLIER,
+ Retraction_Multiplier = RETRACTION_MULTIPLIER,
+ Nozzle = NOZZLE,
+ Filament = FILAMENT,
+ Prime_Length = PRIME_LENGTH,
+ X_Pos, Y_Pos,
+ bed_temp = BED_TEMP,
+ hotend_temp = HOTEND_TEMP,
+ Ooooze_Amount = OOOOZE_AMOUNT;
+
+ int8_t Prime_Flag = 0;
+
+ bool Keep_Heaters_On = false,
+ G26_Debug_flag = false;
+
+ /**
+ * These support functions allow the use of large bit arrays of flags that take very
+ * little RAM. Currently they are limited to being 16x16 in size. Changing the declaration
+ * to unsigned long will allow us to go to 32x32 if higher resolution Mesh's are needed
+ * in the future.
+ */
+ void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y) { CBI(bits[y], x); }
+ void bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { SBI(bits[y], x); }
+ bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { return TEST(bits[y], x); }
+
+ /**
+ * G26: Mesh Validation Pattern generation.
+ *
+ * Used to interactively edit UBL's Mesh by placing the
+ * nozzle in a problem area and doing a G29 P4 R command.
+ */
+ void gcode_G26() {
+ float circle_x, circle_y, x, y, xe, ye, tmp,
+ start_angle, end_angle;
+ int i, xi, yi, lcd_init_counter = 0;
+ mesh_index_pair location;
+
+ if (axis_unhomed_error(true, true, true)) // Don't allow Mesh Validation without homing first
+ gcode_G28();
+
+ if (parse_G26_parameters()) return; // If the paramter parsing did not go OK, we abort the command
+
+ if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
+ do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
+ stepper.synchronize();
+ set_current_to_destination();
+ }
+
+ if (turn_on_heaters()) // Turn on the heaters, leave the command if anything
+ goto LEAVE; // has gone wrong.
+
+ axis_relative_modes[E_AXIS] = false; // Get things setup so we can take control of the
+ //relative_mode = false; // planner and stepper motors!
+ current_position[E_AXIS] = 0.0;
+ sync_plan_position_e();
+
+ if (Prime_Flag && prime_nozzle()) // if prime_nozzle() returns an error, we just bail out.
+ goto LEAVE;
+
+ /**
+ * Bed is preheated
+ *
+ * Nozzle is at temperature
+ *
+ * Filament is primed!
+ *
+ * It's "Show Time" !!!
+ */
+
+ // Clear all of the flags we need
+ ZERO(circle_flags);
+ ZERO(horizontal_mesh_line_flags);
+ ZERO(vertical_mesh_line_flags);
+
+ //
+ // Move nozzle to the specified height for the first layer
+ //
+ set_destination_to_current();
+ destination[Z_AXIS] = Layer_Height;
+ move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
+ move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], Ooooze_Amount);
+
+ UBL_has_control_of_LCD_Panel = 1; // Take control of the LCD Panel!
+ debug_current_and_destination((char *)"Starting G26 Mesh Validation Pattern.");
+
+ do {
+ if (G29_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
+ strcpy(lcd_status_message, "Mesh Validation Stopped."); // We can't do lcd_setstatus() without having it continue;
+ while (G29_lcd_clicked()) idle(); // Debounce the switch click
+ #if ENABLED(ULTRA_LCD)
+ lcd_setstatus("Mesh Validation Stopped.", true);
+ lcd_quick_feedback();
+ #endif
+ goto LEAVE;
+ }
+
+ if (Continue_with_closest)
+ location = find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]);
+ else
+ location = find_closest_circle_to_print(X_Pos, Y_Pos); // Find the closest Mesh Intersection to where we are now.
+
+ if (location.x_index >= 0 && location.y_index >= 0) {
+ circle_x = blm.map_x_index_to_bed_location(location.x_index);
+ circle_y = blm.map_y_index_to_bed_location(location.y_index);
+
+ // Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
+ #ifdef DELTA
+ if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
+ SERIAL_PROTOCOLLNPGM("?Error: Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
+ goto LEAVE;
+ }
+ #endif
+
+ if (circle_x < X_MIN_POS || circle_x > X_MAX_POS || circle_y < Y_MIN_POS || circle_y > Y_MAX_POS) {
+ SERIAL_PROTOCOLLNPGM("?Error: Attempt to print off the bed.");
+ goto LEAVE;
+ }
+
+ xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
+ yi = location.y_index;
+
+ if (G26_Debug_flag) {
+ SERIAL_ECHOPGM(" Doing circle at: (xi=");
+ SERIAL_ECHO(xi);
+ SERIAL_ECHOPGM(", yi=");
+ SERIAL_ECHO(yi);
+ SERIAL_ECHOLNPGM(")");
+ }
+
+ start_angle = 0.0; // assume it is going to be a full circle
+ end_angle = 360.0;
+ if (xi == 0) { // Check for bottom edge
+ start_angle = -90.0;
+ end_angle = 90.0;
+ if (yi == 0) // it is an edge, check for the two left corners
+ start_angle = 0.0;
+ else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
+ end_angle = 0.0;
+ }
+ else if (xi == UBL_MESH_NUM_X_POINTS - 1) { // Check for top edge
+ start_angle = 90.0;
+ end_angle = 270.0;
+ if (yi == 0) // it is an edge, check for the two right corners
+ end_angle = 180.0;
+ else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
+ start_angle = 180.0;
+ }
+ else if (yi == 0) {
+ start_angle = 0.0; // only do the top side of the cirlce
+ end_angle = 180.0;
+ }
+ else if (yi == UBL_MESH_NUM_Y_POINTS - 1) {
+ start_angle = 180.0; // only do the bottom side of the cirlce
+ end_angle = 360.0;
+ }
+
+ /**
+ * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
+ * the CPU load and make the arc drawing faster and more smooth
+ */
+ float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
+ int tmp_div_30;
+ for (i = 0; i <= 360 / 30; i++) {
+ cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
+ sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
+ }
+
+ for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
+ tmp_div_30 = tmp / 30.0;
+ if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
+
+ x = circle_x + cos_table[tmp_div_30]; // for speed, these are now a lookup table entry
+ y = circle_y + sin_table[tmp_div_30];
+
+ if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
+ xe = circle_x + cos_table[tmp_div_30 + 1]; // for speed, these are now a lookup table entry
+ ye = circle_y + sin_table[tmp_div_30 + 1];
+ #ifdef DELTA
+ if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of
+ continue; // the 'circle' is on the bed. If
+ #else // not, we need to skip
+ x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
+ y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
+ xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
+ ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
+ #endif
+
+ if (G26_Debug_flag) {
+ char ccc, *cptr, seg_msg[50], seg_num[10];
+ strcpy(seg_msg, " segment: ");
+ strcpy(seg_num, " \n");
+ cptr = (char *) "01234567890ABCDEF????????";
+ ccc = cptr[tmp_div_30];
+ seg_num[1] = ccc;
+ strcat(seg_msg, seg_num);
+ debug_current_and_destination(seg_msg);
+ }
+
+ print_line_from_here_to_there(x, y, Layer_Height, xe, ye, Layer_Height);
+ }
+ lcd_init_counter++;
+ if (lcd_init_counter > 10) {
+ lcd_init_counter = 0;
+ lcd_init(); // Some people's LCD Displays are locking up. This might help them
+ }
+
+ debug_current_and_destination((char *)"Looking for lines to connect.");
+ look_for_lines_to_connect();
+ debug_current_and_destination((char *)"Done with line connect.");
+ }
+
+ debug_current_and_destination((char *)"Done with current circle.");
+
+ }
+ while (location.x_index >= 0 && location.y_index >= 0) ;
+
+ LEAVE:
+
+ retract_filament();
+ destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Raise the nozzle
+
+ debug_current_and_destination((char *)"ready to do Z-Raise.");
+ move_to( destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
+ debug_current_and_destination((char *)"done doing Z-Raise.");
+
+ destination[X_AXIS] = X_Pos; // Move back to the starting position
+ destination[Y_AXIS] = Y_Pos;
+ destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
+
+ move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
+ debug_current_and_destination((char *)"done doing X/Y move.");
+
+ UBL_has_control_of_LCD_Panel = 0; // Give back control of the LCD Panel!
+
+ if (!Keep_Heaters_On) {
+ #if HAS_TEMP_BED
+ thermalManager.setTargetBed(0.0);
+ #endif
+ thermalManager.setTargetHotend(0.0, 0);
+ }
+ lcd_init(); // Some people's LCD Displays are locking up. This might help them
+ }
+
+
+ float valid_trig_angle(float d) {
+ while (d > 360.0) d -= 360.0;
+ while (d < 0.0) d += 360.0;
+ return d;
+ }
+
+ mesh_index_pair find_closest_circle_to_print( float X, float Y) {
+ float f, mx, my, dx, dy, closest = 99999.99;
+ mesh_index_pair return_val;
+
+ return_val.x_index = return_val.y_index = -1;
+
+ for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
+ for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
+ if (!is_bit_set(circle_flags, i, j)) {
+ mx = blm.map_x_index_to_bed_location(i); // We found a circle that needs to be printed
+ my = blm.map_y_index_to_bed_location(j);
+
+ dx = X - mx; // Get the distance to this intersection
+ dy = Y - my;
+ f = HYPOT(dx, dy);
+
+ dx = X_Pos - mx; // It is possible that we are being called with the values
+ dy = Y_Pos - my; // to let us find the closest circle to the start position.
+ f += HYPOT(dx, dy) / 15.0; // But if this is not the case,
+ // we are going to add in a small
+ // weighting to the distance calculation to help it choose
+ // a better place to continue.
+
+ if (Random_Deviation > 1.0)
+ f += random(0.0, Random_Deviation); // Add in the specified amount of Random Noise to our search
+
+ if (f < closest) {
+ closest = f; // We found a closer location that is still
+ return_val.x_index = i; // un-printed --- save the data for it
+ return_val.y_index = j;
+ return_val.distance= closest;
+ }
+ }
+ }
+ }
+ bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
+ return return_val;
+ }
+
+ void look_for_lines_to_connect() {
+ float sx, sy, ex, ey;
+
+ for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
+ for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
+
+ if (i < UBL_MESH_NUM_X_POINTS) { // We can't connect to anything to the right than UBL_MESH_NUM_X_POINTS.
+ // This is already a half circle because we are at the edge of the bed.
+
+ if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
+ if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
+
+ //
+ // We found two circles that need a horizontal line to connect them
+ // Print it!
+ //
+ sx = blm.map_x_index_to_bed_location(i);
+ sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
+ sy = blm.map_y_index_to_bed_location(j);
+
+ ex = blm.map_x_index_to_bed_location(i + 1);
+ ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
+ ey = sy;
+
+ sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
+ sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
+ ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
+ ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
+
+ if (G26_Debug_flag) {
+ SERIAL_ECHOPGM(" Connecting with horizontal line (sx=");
+ SERIAL_ECHO(sx);
+ SERIAL_ECHOPGM(", sy=");
+ SERIAL_ECHO(sy);
+ SERIAL_ECHOPGM(") -> (ex=");
+ SERIAL_ECHO(ex);
+ SERIAL_ECHOPGM(", ey=");
+ SERIAL_ECHO(ey);
+ SERIAL_ECHOLNPGM(")");
+ debug_current_and_destination((char *)"Connecting horizontal line.");
+ }
+
+ print_line_from_here_to_there(sx, sy, Layer_Height, ex, ey, Layer_Height);
+ bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
+ }
+ }
+
+ if (j < UBL_MESH_NUM_Y_POINTS) { // We can't connect to anything further back than UBL_MESH_NUM_Y_POINTS.
+ // This is already a half circle because we are at the edge of the bed.
+
+ if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
+ if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
+ //
+ // We found two circles that need a vertical line to connect them
+ // Print it!
+ //
+ sx = blm.map_x_index_to_bed_location(i);
+ sy = blm.map_y_index_to_bed_location(j);
+ sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
+
+ ex = sx;
+ ey = blm.map_y_index_to_bed_location(j + 1);
+ ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
+
+ sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
+ sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
+ ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
+ ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
+
+ if (G26_Debug_flag) {
+ SERIAL_ECHOPGM(" Connecting with vertical line (sx=");
+ SERIAL_ECHO(sx);
+ SERIAL_ECHOPGM(", sy=");
+ SERIAL_ECHO(sy);
+ SERIAL_ECHOPGM(") -> (ex=");
+ SERIAL_ECHO(ex);
+ SERIAL_ECHOPGM(", ey=");
+ SERIAL_ECHO(ey);
+ SERIAL_ECHOLNPGM(")");
+ debug_current_and_destination((char *)"Connecting vertical line.");
+ }
+ print_line_from_here_to_there(sx, sy, Layer_Height, ex, ey, Layer_Height);
+ bit_set( vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ void debug_current_and_destination(char *title) {
+ float dx, dy, de, xy_dist, fpmm;
+
+ // if the title message starts with a '!' it is so important, we are going to
+ // ignore the status of the G26_Debug_Flag
+ if (*title != '!' && !G26_Debug_flag) return;
+
+ dx = current_position[X_AXIS] - destination[X_AXIS];
+ dy = current_position[Y_AXIS] - destination[Y_AXIS];
+ de = destination[E_AXIS] - current_position[E_AXIS];
+ if (de == 0.0) return;
+
+ xy_dist = HYPOT(dx, dy);
+ if (xy_dist == 0.0) {
+ return;
+ //SERIAL_ECHOPGM(" FPMM=");
+ //fpmm = de;
+ //SERIAL_PROTOCOL_F(fpmm, 6);
+ }
+ else {
+ SERIAL_ECHOPGM(" fpmm=");
+ fpmm = de / xy_dist;
+ SERIAL_PROTOCOL_F(fpmm, 6);
+ }
+
+ SERIAL_ECHOPGM(" current=( ");
+ SERIAL_PROTOCOL_F(current_position[X_AXIS], 6);
+ SERIAL_ECHOPGM(", ");
+ SERIAL_PROTOCOL_F(current_position[Y_AXIS], 6);
+ SERIAL_ECHOPGM(", ");
+ SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
+ SERIAL_ECHOPGM(", ");
+ SERIAL_PROTOCOL_F(current_position[E_AXIS], 6);
+ SERIAL_ECHOPGM(" ) destination=( ");
+ if (current_position[X_AXIS] == destination[X_AXIS])
+ SERIAL_ECHOPGM("-------------");
+ else
+ SERIAL_PROTOCOL_F(destination[X_AXIS], 6);
+
+ SERIAL_ECHOPGM(", ");
+
+ if (current_position[Y_AXIS] == destination[Y_AXIS])
+ SERIAL_ECHOPGM("-------------");
+ else
+ SERIAL_PROTOCOL_F(destination[Y_AXIS], 6);
+
+ SERIAL_ECHOPGM(", ");
+
+ if (current_position[Z_AXIS] == destination[Z_AXIS])
+ SERIAL_ECHOPGM("-------------");
+ else
+ SERIAL_PROTOCOL_F(destination[Z_AXIS], 6);
+
+ SERIAL_ECHOPGM(", ");
+
+ if (current_position[E_AXIS] == destination[E_AXIS])
+ SERIAL_ECHOPGM("-------------");
+ else
+ SERIAL_PROTOCOL_F(destination[E_AXIS], 6);
+
+ SERIAL_ECHOPGM(" ) ");
+ SERIAL_ECHO(title);
+ SERIAL_EOL;
+
+ SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65
+
+ //if (been_to_2_6) {
+ //while ((digitalRead(66) & 0x01) != 0)
+ // idle();
+ //}
+ }
+
+ void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
+ float feed_value;
+ static float last_z = -999.99;
+
+ bool has_XY_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
+
+ if (G26_Debug_flag) {
+ SERIAL_ECHOPAIR("in move_to() has_XY_component:", (int)has_XY_component);
+ SERIAL_EOL;
+ }
+
+ if (z != last_z) {
+
+ if (G26_Debug_flag) {
+ SERIAL_ECHOPAIR("in move_to() changing Z to ", (int)z);
+ SERIAL_EOL;
+ }
+ last_z = z;
+ feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
+
+ destination[X_AXIS] = current_position[X_AXIS];
+ destination[Y_AXIS] = current_position[Y_AXIS];
+ destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
+ destination[E_AXIS] = current_position[E_AXIS];
+
+ UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
+
+ stepper.synchronize();
+ set_destination_to_current();
+
+ if (G26_Debug_flag)
+ debug_current_and_destination((char *)" in move_to() done with Z move");
+ }
+
+ // Check if X or Y is involved in the movement.
+ // Yes: a 'normal' movement. No: a retract() or un_retract()
+ feed_value = has_XY_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
+
+ if (G26_Debug_flag) {
+ SERIAL_ECHOPAIR("in move_to() feed_value for XY:", feed_value);
+ SERIAL_EOL;
+ }
+
+ destination[X_AXIS] = x;
+ destination[Y_AXIS] = y;
+ destination[E_AXIS] += e_delta;
+
+ if (G26_Debug_flag)
+ debug_current_and_destination((char *)" in move_to() doing last move");
+
+ UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
+
+ if (G26_Debug_flag)
+ debug_current_and_destination((char *)" in move_to() after last move");
+
+ stepper.synchronize();
+ set_destination_to_current();
+ }
+
+ void retract_filament() {
+ if (!retracted) { // Only retract if we are not already retracted!
+ retracted = true;
+ if (G26_Debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
+ move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * Retraction_Multiplier);
+ if (G26_Debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
+ }
+ }
+
+ void un_retract_filament() {
+ if (retracted) { // Only un-retract if we are retracted.
+ move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * Retraction_Multiplier);
+ retracted = false;
+ if (G26_Debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
+ }
+ }
+
+ /**
+ * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
+ * to the other. But there are really three sets of coordinates involved. The first coordinate
+ * is the present location of the nozzle. We don't necessarily want to print from this location.
+ * We first need to move the nozzle to the start of line segment where we want to print. Once
+ * there, we can use the two coordinates supplied to draw the line.
+ *
+ * Note: Although we assume the first set of coordinates is the start of the line and the second
+ * set of coordinates is the end of the line, it does not always work out that way. This function
+ * optimizes the movement to minimize the travel distance before it can start printing. This saves
+ * a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does
+ * cause a lot of very little short retracement of th nozzle when it draws the very first line
+ * segment of a 'circle'. The time this requires is very short and is easily saved by the other
+ * cases where the optimization comes into play.
+ */
+ void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) {
+ float dx, dy, dx_s, dy_s, dx_e, dy_e, dist_start, dist_end, Line_Length;
+
+ dx_s = current_position[X_AXIS] - sx; // find our distance from the start of the actual line segment
+ dy_s = current_position[Y_AXIS] - sy;
+ dist_start = HYPOT2(dx_s, dy_s); // We don't need to do a sqrt(), we can compare the distance^2
+ // to save computation time
+ dx_e = current_position[X_AXIS] - ex; // find our distance from the end of the actual line segment
+ dy_e = current_position[Y_AXIS] - ey;
+ dist_end = HYPOT2(dx_e, dy_e);
+
+ dx = ex - sx;
+ dy = ey - sy;
+ Line_Length = HYPOT(dx, dy);
+
+ // If the end point of the line is closer to the nozzle, we are going to
+ // flip the direction of this line. We will print it from the end to the start.
+ // On very small lines we don't do the optimization because it just isn't worth it.
+ //
+ if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(Line_Length)) {
+ if (G26_Debug_flag)
+ SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
+ print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
+ return;
+ }
+
+ // Now decide if we should retract.
+
+ if (dist_start > 2.0) {
+ retract_filament();
+ if (G26_Debug_flag)
+ SERIAL_ECHOLNPGM(" filament retracted.");
+ }
+ move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
+
+ E_Pos_Delta = Line_Length * G26_E_AXIS_feedrate * Extrusion_Multiplier;
+
+ un_retract_filament();
+ if (G26_Debug_flag) {
+ SERIAL_ECHOLNPGM(" doing printing move.");
+ debug_current_and_destination((char *)"doing final move_to() inside print_line_from_here_to_there()");
+ }
+ move_to(ex, ey, ez, E_Pos_Delta); // Get to the ending point with an appropriate amount of extrusion
+ }
+
+ /**
+ * This function used to be inline code in G26. But there are so many
+ * parameters it made sense to turn them into static globals and get
+ * this code out of sight of the main routine.
+ */
+ bool parse_G26_parameters() {
+
+ Extrusion_Multiplier = EXTRUSION_MULTIPLIER;
+ Retraction_Multiplier = RETRACTION_MULTIPLIER;
+ Nozzle = NOZZLE;
+ Filament = FILAMENT;
+ Layer_Height = LAYER_HEIGHT;
+ Prime_Length = PRIME_LENGTH;
+ bed_temp = BED_TEMP;
+ hotend_temp = HOTEND_TEMP;
+ Ooooze_Amount = OOOOZE_AMOUNT;
+ Prime_Flag = 0;
+ Keep_Heaters_On = false;
+
+ if (code_seen('B')) {
+ bed_temp = code_value_float();
+ if (bed_temp < 15.0 || bed_temp > 140.0) {
+ SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
+ return UBL_ERR;
+ }
+ }
+
+ if (code_seen('C')) Continue_with_closest++;
+
+ if (code_seen('L')) {
+ Layer_Height = code_value_float();
+ if (Layer_Height<0.0 || Layer_Height>2.0) {
+ SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
+ return UBL_ERR;
+ }
+ }
+
+ if (code_seen('Q')) {
+ if (code_has_value()) {
+ Retraction_Multiplier = code_value_float();
+ if (Retraction_Multiplier<.05 || Retraction_Multiplier>15.0) {
+ SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
+ return UBL_ERR;
+ }
+ }
+ else {
+ SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
+ return UBL_ERR;
+ }
+ }
+
+ if (code_seen('N')) {
+ Nozzle = code_value_float();
+ if (Nozzle < 0.1 || Nozzle > 1.0) {
+ SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
+ return UBL_ERR;
+ }
+ }
+
+ if (code_seen('K')) Keep_Heaters_On++;
+
+ if (code_seen('O') && code_has_value())
+ Ooooze_Amount = code_value_float();
+
+ if (code_seen('P')) {
+ if (!code_has_value())
+ Prime_Flag = -1;
+ else {
+ Prime_Flag++;
+ Prime_Length = code_value_float();
+ if (Prime_Length < 0.0 || Prime_Length > 25.0) {
+ SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
+ return UBL_ERR;
+ }
+ }
+ }
+
+ if (code_seen('F')) {
+ Filament = code_value_float();
+ if (Filament < 1.0 || Filament > 4.0) {
+ SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
+ return UBL_ERR;
+ }
+ }
+ Extrusion_Multiplier *= sq(1.75) / sq(Filament); // If we aren't using 1.75mm filament, we need to
+ // scale up or down the length needed to get the
+ // same volume of filament
+ Extrusion_Multiplier *= Filament * sq(Nozzle) / sq(0.3); // Scale up by nozzle size
+
+ if (code_seen('H')) {
+ hotend_temp = code_value_float();
+ if (hotend_temp < 165.0 || hotend_temp > 280.0) {
+ SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
+ return UBL_ERR;
+ }
+ }
+
+ if (code_seen('R')) {
+ randomSeed(millis());
+ Random_Deviation = code_has_value() ? code_value_float() : 50.0;
+ }
+
+ X_Pos = current_position[X_AXIS];
+ Y_Pos = current_position[Y_AXIS];
+
+ if (code_seen('X')) {
+ X_Pos = code_value_float();
+ if (X_Pos < X_MIN_POS || X_Pos > X_MAX_POS) {
+ SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
+ return UBL_ERR;
+ }
+ }
+ else
+
+ if (code_seen('Y')) {
+ Y_Pos = code_value_float();
+ if (Y_Pos < Y_MIN_POS || Y_Pos > Y_MAX_POS) {
+ SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
+ return UBL_ERR;
+ }
+ }
+
+ /**
+ * We save the question of what to do with the Unified Bed Leveling System's Activation until the very
+ * end. The reason is, if one of the parameters specified up above is incorrect, we don't want to
+ * alter the system's status. We wait until we know everything is correct before altering the state
+ * of the system.
+ */
+ blm.state.active = !code_seen('D');
+
+ return UBL_OK;
+ }
+
+ /**
+ * Turn on the bed and nozzle heat and
+ * wait for them to get up to temperature.
+ */
+ bool turn_on_heaters() {
+ #if HAS_TEMP_BED
+ #if ENABLED(ULTRA_LCD)
+ if (bed_temp > 25) {
+ lcd_setstatus("G26 Heating Bed.", true);
+ lcd_quick_feedback();
+ #endif
+ UBL_has_control_of_LCD_Panel++;
+ thermalManager.setTargetBed(bed_temp);
+ while (abs(thermalManager.degBed() - bed_temp) > 3) {
+ if (G29_lcd_clicked()) {
+ strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
+ while (G29_lcd_clicked()) idle(); // Debounce the switch
+ lcd_setstatus("Leaving G26", true); // Now we do it right.
+ return UBL_ERR;
+ }
+ idle();
+ }
+ #if ENABLED(ULTRA_LCD)
+ }
+ lcd_setstatus("G26 Heating Nozzle.", true);
+ lcd_quick_feedback();
+ #endif
+ #endif
+
+ // Start heating the nozzle and wait for it to reach temperature.
+ thermalManager.setTargetHotend(hotend_temp, 0);
+ while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
+ if (G29_lcd_clicked()) {
+ strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
+ while (G29_lcd_clicked()) idle(); // Debounce the switch
+ lcd_setstatus("Leaving G26", true); // Now we do it right.
+ return UBL_ERR;
+ }
+ idle();
+ }
+
+ #if ENABLED(ULTRA_LCD)
+ lcd_setstatus("", true);
+ lcd_quick_feedback();
+ #endif
+ return UBL_OK;
+ }
+
+ /**
+ * Prime the nozzle if needed. Return true on error.
+ */
+ bool prime_nozzle() {
+ float Total_Prime = 0.0;
+
+ if (Prime_Flag == -1) { // The user wants to control how much filament gets purged
+ lcd_setstatus("User Controled Prime", true);
+ chirp_at_user();
+
+ set_destination_to_current();
+
+ un_retract_filament(); // Lets make sure the G26 command doesn't think the filament is
+ // retracted(). We are here because we want to prime the nozzle.
+ // So let's just unretract just to be sure.
+
+ UBL_has_control_of_LCD_Panel++;
+ while (!G29_lcd_clicked()) {
+ chirp_at_user();
+ destination[E_AXIS] += 0.25;
+ #ifdef PREVENT_LENGTHY_EXTRUDE
+ Total_Prime += 0.25;
+ if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
+ #endif
+ UBL_line_to_destination(
+ destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
+ //planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
+ planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
+ );
+
+ stepper.synchronize(); // Without this synchronize, the purge is more consistent,
+ // but because the planner has a buffer, we won't be able
+ // to stop as quickly. So we put up with the less smooth
+ // action to give the user a more responsive 'Stop'.
+ set_destination_to_current();
+ idle();
+ }
+
+ strcpy(lcd_status_message, "Done Priming"); // We can't do lcd_setstatus() without having it continue;
+ // So... We cheat to get a message up.
+
+ while (G29_lcd_clicked()) idle(); // Debounce the switch
+
+ #if ENABLED(ULTRA_LCD)
+ UBL_has_control_of_LCD_Panel = 0;
+ lcd_setstatus("Done Priming", true); // Now we do it right.
+ lcd_quick_feedback();
+ #endif
+ }
+ else {
+ #if ENABLED(ULTRA_LCD)
+ lcd_setstatus("Fixed Length Prime.", true);
+ lcd_quick_feedback();
+ #endif
+ set_destination_to_current();
+ destination[E_AXIS] += Prime_Length;
+ UBL_line_to_destination(
+ destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
+ //planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
+ planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
+ );
+ stepper.synchronize();
+ set_destination_to_current();
+ retract_filament();
+ }
+ return UBL_OK;
+ }
+
+#endif // AUTO_BED_LEVELING_UBL
diff --git a/Marlin/UBL.h b/Marlin/UBL.h
new file mode 100644
index 000000000..2c2627628
--- /dev/null
+++ b/Marlin/UBL.h
@@ -0,0 +1,331 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see .
+ *
+ */
+
+#include "Marlin.h"
+#include "math.h"
+
+#ifndef UNIFIED_BED_LEVELING_H
+#define UNIFIED_BED_LEVELING_H
+
+ #if ENABLED(AUTO_BED_LEVELING_UBL)
+
+ #define UBL_OK false
+ #define UBL_ERR true
+
+ typedef struct {
+ int x_index, y_index;
+ float distance; // Not always used. But when populated, it is the distance
+ // from the search location
+ } mesh_index_pair;
+
+ struct vector { double dx, dy, dz; };
+
+ enum Mesh_Point_Type { INVALID, REAL, SET_IN_BITMAP };
+
+ bool axis_unhomed_error(bool, bool, bool);
+ void dump(char *str, float f);
+ bool G29_lcd_clicked();
+ void probe_entire_mesh(float, float, bool, bool);
+ void UBL_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
+ void manually_probe_remaining_mesh(float, float, float, float, bool);
+ struct vector tilt_mesh_based_on_3pts(float, float, float);
+ void new_set_bed_level_equation_3pts(float, float, float);
+ float measure_business_card_thickness(float);
+ mesh_index_pair find_closest_mesh_point_of_type(Mesh_Point_Type, float, float, bool, unsigned int[16]);
+ void Find_Mean_Mesh_Height();
+ void Shift_Mesh_Height();
+ bool G29_Parameter_Parsing();
+ void G29_What_Command();
+ void G29_EEPROM_Dump();
+ void G29_Kompare_Current_Mesh_to_Stored_Mesh();
+ void fine_tune_mesh(float, float, float, bool);
+ void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
+ void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
+ bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
+ char *ftostr43sign(const float&, char);
+
+ void gcode_G26();
+ void gcode_G28();
+ void gcode_G29();
+ extern char conv[9];
+
+ void save_UBL_active_state_and_disable();
+ void restore_UBL_active_state_and_leave();
+
+ ///////////////////////////////////////////////////////////////////////////////////////////////////////
+
+ #if ENABLED(ULTRA_LCD)
+ extern char lcd_status_message[];
+ void lcd_quick_feedback();
+ #endif
+
+ enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
+
+ #define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0))
+ #define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0))
+
+ extern bool G26_Debug_flag;
+ extern float last_specified_z;
+ extern float fade_scaling_factor_for_current_height;
+ extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
+ extern float mesh_index_to_X_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the
+ extern float mesh_index_to_Y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
+
+ class bed_leveling {
+ public:
+ struct ubl_state {
+ bool active = false;
+ float z_offset = 0.0;
+ int EEPROM_storage_slot = -1,
+ n_x = UBL_MESH_NUM_X_POINTS,
+ n_y = UBL_MESH_NUM_Y_POINTS;
+ float mesh_x_min = UBL_MESH_MIN_X,
+ mesh_y_min = UBL_MESH_MIN_Y,
+ mesh_x_max = UBL_MESH_MAX_X,
+ mesh_y_max = UBL_MESH_MAX_Y,
+ mesh_x_dist = MESH_X_DIST,
+ mesh_y_dist = MESH_Y_DIST,
+ G29_Correction_Fade_Height = 10.0,
+ G29_Fade_Height_Multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating
+ // point divide. So, we keep this number in both forms. The first
+ // is for the user. The second one is the one that is actually used
+ // again and again and again during the correction calculations.
+
+ unsigned char padding[24]; // This is just to allow room to add state variables without
+ // changing the location of data structures in the EEPROM.
+ // This is for compatability with future versions to keep
+ // people from having to regenerate thier mesh data.
+ //
+ // If you change the contents of this struct, please adjust
+ // the padding[] to keep the size the same!
+ } state, pre_initialized;
+
+ bed_leveling();
+ // ~bed_leveling(); // No destructor because this object never goes away!
+
+ void display_map(int);
+
+ void reset();
+ void invalidate();
+
+ void store_state();
+ void load_state();
+ void store_mesh(int);
+ void load_mesh(int);
+
+ bool sanity_check();
+
+ FORCE_INLINE float map_x_index_to_bed_location(int8_t i){ return ((float) UBL_MESH_MIN_X) + (((float) MESH_X_DIST) * (float) i); };
+ FORCE_INLINE float map_y_index_to_bed_location(int8_t i){ return ((float) UBL_MESH_MIN_Y) + (((float) MESH_Y_DIST) * (float) i); };
+
+ void set_z(const int8_t px, const int8_t py, const float z) { z_values[px][py] = z; }
+
+ int8_t get_cell_index_x(float x) {
+ int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
+ return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
+ } // position. But with this defined this way, it is possible
+ // to extrapolate off of this point even further out. Probably
+ // that is OK because something else should be keeping that from
+ // happening and should not be worried about at this level.
+ int8_t get_cell_index_y(float y) {
+ int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
+ return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
+ } // position. But with this defined this way, it is possible
+ // to extrapolate off of this point even further out. Probably
+ // that is OK because something else should be keeping that from
+ // happening and should not be worried about at this level.
+
+ int8_t find_closest_x_index(float x) {
+ int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
+ return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
+ }
+
+ int8_t find_closest_y_index(float y) {
+ int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
+ return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
+ }
+
+ /**
+ * z2 --|
+ * z0 | |
+ * | | + (z2-z1)
+ * z1 | | |
+ * ---+-------------+--------+-- --|
+ * a1 a0 a2
+ * |<---delta_a---------->|
+ *
+ * calc_z0 is the basis for all the Mesh Based correction. It is used to
+ * find the expected Z Height at a position between two known Z-Height locations
+ *
+ * It is farly expensive with its 4 floating point additions and 2 floating point
+ * multiplications.
+ */
+ inline float calc_z0(float a0, float a1, float z1, float a2, float z2) {
+ float delta_z = (z2 - z1);
+ float delta_a = (a0 - a1) / (a2 - a1);
+ return z1 + delta_a * delta_z;
+ }
+
+ /**
+ * get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
+ * three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
+ * we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
+ * the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
+ * the X index of the x0 intersection available and we don't want to perform any extra floating
+ * point operations.
+ */
+ inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(float x0, int x1_i, int yi) {
+ if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
+ SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
+ SERIAL_ECHOPAIR(",x1_i=", x1_i);
+ SERIAL_ECHOPAIR(",yi=", yi);
+ SERIAL_CHAR(')');
+ SERIAL_EOL;
+ return NAN;
+ }
+
+ const float a0ma1diva2ma1 = (x0 - mesh_index_to_X_location[x1_i]) * (1.0 / (MESH_X_DIST)),
+ z1 = z_values[x1_i][yi],
+ z2 = z_values[x1_i + 1][yi],
+ dz = (z2 - z1);
+
+ return z1 + a0ma1diva2ma1 * dz;
+ }
+
+ //
+ // See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
+ //
+ inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(float y0, int xi, int y1_i) {
+ if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
+ SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
+ SERIAL_ECHOPAIR(", x1_i=", xi);
+ SERIAL_ECHOPAIR(", yi=", y1_i);
+ SERIAL_CHAR(')');
+ SERIAL_EOL;
+ return NAN;
+ }
+
+ const float a0ma1diva2ma1 = (y0 - mesh_index_to_Y_location[y1_i]) * (1.0 / (MESH_Y_DIST)),
+ z1 = z_values[xi][y1_i],
+ z2 = z_values[xi][y1_i + 1],
+ dz = (z2 - z1);
+
+ return z1 + a0ma1diva2ma1 * dz;
+ }
+
+ /**
+ * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
+ * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
+ * Z-Height at both ends. Then it does a linear interpolation of these heights based
+ * on the Y position within the cell.
+ */
+ float get_z_correction(float x0, float y0) {
+ int8_t cx = get_cell_index_x(x0),
+ cy = get_cell_index_y(y0);
+
+ if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
+
+ SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
+ SERIAL_ECHOPAIR(", y0=", y0);
+ SERIAL_CHAR(')');
+ SERIAL_EOL;
+
+ #if ENABLED(ULTRA_LCD)
+ strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
+ lcd_quick_feedback();
+ #endif
+ return 0.0; // this used to return state.z_offset
+ }
+
+ float z1 = calc_z0(x0,
+ map_x_index_to_bed_location(cx), z_values[cx][cy],
+ map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy]);
+ float z2 = calc_z0(x0,
+ map_x_index_to_bed_location(cx), z_values[cx][cy + 1],
+ map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy + 1]);
+ float z0 = calc_z0(y0,
+ map_y_index_to_bed_location(cy), z1,
+ map_y_index_to_bed_location(cy + 1), z2);
+
+ #if ENABLED(DEBUG_LEVELING_FEATURE)
+ if (DEBUGGING(MESH_ADJUST)) {
+ SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
+ SERIAL_ECHOPAIR(",", y0);
+ SERIAL_ECHOPGM(")=");
+ SERIAL_PROTOCOL_F(z0, 6);
+ }
+ #endif
+
+ #if ENABLED(DEBUG_LEVELING_FEATURE)
+ if (DEBUGGING(MESH_ADJUST)) {
+ SERIAL_ECHOPGM(" >>>---> ");
+ SERIAL_PROTOCOL_F(z0, 6);
+ SERIAL_EOL;
+ }
+ #endif
+
+ if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
+ z0 = 0.0; // in blm.z_values[][] and propagate through the
+ // calculations. If our correction is NAN, we throw it out
+ // because part of the Mesh is undefined and we don't have the
+ // information we need to complete the height correction.
+
+ #if ENABLED(DEBUG_LEVELING_FEATURE)
+ if (DEBUGGING(MESH_ADJUST)) {
+ SERIAL_ECHOPGM("??? Yikes! NAN in get_z_correction( ");
+ SERIAL_ECHO(x0);
+ SERIAL_ECHOPGM(", ");
+ SERIAL_ECHO(y0);
+ SERIAL_ECHOLNPGM(" )");
+ }
+ #endif
+ }
+ return z0; // there used to be a +state.z_offset on this line
+ }
+
+ /**
+ * This routine is used to scale the Z correction depending upon the current nozzle height. It is
+ * optimized for speed. It avoids floating point operations by checking if the requested scaling
+ * factor is going to be the same as the last time the function calculated a value. If so, it just
+ * returns it.
+ *
+ * If it must do a calcuation, it will return a scaling factor of 0.0 if the UBL System is not active
+ * or if the current Z Height is past the specified 'Fade Height'
+ */
+ FORCE_INLINE float fade_scaling_factor_for_Z(float current_z) {
+ if (last_specified_z == current_z)
+ return fade_scaling_factor_for_current_height;
+
+ last_specified_z = current_z;
+ fade_scaling_factor_for_current_height =
+ state.active && current_z < state.G29_Correction_Fade_Height
+ ? 1.0 - (current_z * state.G29_Fade_Height_Multiplier)
+ : 0.0;
+ return fade_scaling_factor_for_current_height;
+ }
+ };
+
+ extern bed_leveling blm;
+ extern int Unified_Bed_Leveling_EEPROM_start;
+
+#endif // AUTO_BED_LEVELING_UBL
+#endif // UNIFIED_BED_LEVELING_H
\ No newline at end of file
diff --git a/Marlin/UBL_Bed_Leveling.cpp b/Marlin/UBL_Bed_Leveling.cpp
new file mode 100644
index 000000000..feff74e97
--- /dev/null
+++ b/Marlin/UBL_Bed_Leveling.cpp
@@ -0,0 +1,296 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see .
+ *
+ */
+
+#include "Marlin.h"
+#include "math.h"
+
+#if ENABLED(AUTO_BED_LEVELING_UBL)
+ #include "UBL.h"
+ #include "hex_print_routines.h"
+
+ /**
+ * These variables used to be declared inside the bed_leveling class. We are going to still declare
+ * them within the .cpp file for bed leveling. But there is only one instance of the bed leveling
+ * object and we can get rid of a level of inderection by not making them 'member data'. So, in the
+ * interest of speed, we do it this way. When we move to a 32-Bit processor, they can be moved
+ * back inside the bed leveling class.
+ */
+ float last_specified_z,
+ fade_scaling_factor_for_current_height,
+ z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
+ mesh_index_to_X_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the
+ mesh_index_to_Y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
+
+ bed_leveling::bed_leveling() {
+ for (uint8_t i = 0; i <= UBL_MESH_NUM_X_POINTS; i++) // We go one past what we expect to ever need for safety
+ mesh_index_to_X_location[i] = double(UBL_MESH_MIN_X) + double(MESH_X_DIST) * double(i);
+
+ for (uint8_t i = 0; i <= UBL_MESH_NUM_Y_POINTS; i++) // We go one past what we expect to ever need for safety
+ mesh_index_to_Y_location[i] = double(UBL_MESH_MIN_Y) + double(MESH_Y_DIST) * double(i);
+
+ reset();
+ }
+
+ void bed_leveling::store_state() {
+ int k = E2END - sizeof(blm.state);
+ eeprom_write_block((void *)&blm.state, (void *)k, sizeof(blm.state));
+ }
+
+ void bed_leveling::load_state() {
+ int k = E2END - sizeof(blm.state);
+ eeprom_read_block((void *)&blm.state, (void *)k, sizeof(blm.state));
+
+ if (sanity_check())
+ SERIAL_PROTOCOLLNPGM("?In load_state() sanity_check() failed.\n");
+
+ // These lines can go away in a few weeks. They are just
+ // to make sure people updating thier firmware won't be using
+ if (blm.state.G29_Fade_Height_Multiplier != 1.0 / blm.state.G29_Correction_Fade_Height) { // an incomplete Bed_Leveling.state structure. For speed
+ blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height; // we now multiply by the inverse of the Fade Height instead of
+ store_state(); // dividing by it. Soon... all of the old structures will be
+ } // updated, but until then, we try to ease the transition
+ // for our Beta testers.
+ }
+
+ void bed_leveling::load_mesh(int m) {
+ int k = E2END - sizeof(blm.state),
+ j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
+
+ if (m == -1) {
+ SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n");
+ reset();
+ return;
+ }
+
+ if (m < 0 || m >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
+ SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
+ return;
+ }
+
+ j = k - (m + 1) * sizeof(z_values);
+ eeprom_read_block((void *)&z_values , (void *)j, sizeof(z_values));
+
+ SERIAL_PROTOCOLPGM("Mesh loaded from slot ");
+ SERIAL_PROTOCOL(m);
+ SERIAL_PROTOCOLPGM(" at offset 0x");
+ prt_hex_word(j);
+ SERIAL_EOL;
+ }
+
+ void bed_leveling:: store_mesh(int m) {
+ int k = E2END - sizeof(state),
+ j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
+
+ if (m < 0 || m >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
+ SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
+ SERIAL_PROTOCOL(m);
+ SERIAL_PROTOCOLLNPGM(" mesh slots available.\n");
+ SERIAL_PROTOCOLLNPAIR("E2END : ", E2END);
+ SERIAL_PROTOCOLLNPAIR("k : ", k);
+ SERIAL_PROTOCOLLNPAIR("j : ", j);
+ SERIAL_PROTOCOLLNPAIR("m : ", m);
+ SERIAL_EOL;
+ return;
+ }
+
+ j = k - (m + 1) * sizeof(z_values);
+ eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values));
+
+ SERIAL_PROTOCOLPGM("Mesh saved in slot ");
+ SERIAL_PROTOCOL(m);
+ SERIAL_PROTOCOLPGM(" at offset 0x");
+ prt_hex_word(j);
+ SERIAL_EOL;
+ }
+
+ void bed_leveling::reset() {
+ state.active = false;
+ state.z_offset = 0;
+ state.EEPROM_storage_slot = -1;
+
+ ZERO(z_values);
+
+ last_specified_z = -999.9; // We can't pre-initialize these values in the declaration
+ fade_scaling_factor_for_current_height = 0.0; // due to C++11 constraints
+ }
+
+ void bed_leveling::invalidate() {
+ prt_hex_word((unsigned int)this);
+ SERIAL_EOL;
+
+ state.active = false;
+ state.z_offset = 0;
+ for (int x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
+ for (int y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
+ z_values[x][y] = NAN;
+ }
+
+ void bed_leveling::display_map(int map_type) {
+ float f, current_xi, current_yi;
+ int8_t i, j;
+ UNUSED(map_type);
+
+ SERIAL_PROTOCOLLNPGM("\nBed Topography Report:\n");
+
+ SERIAL_ECHOPAIR("(", 0);
+ SERIAL_ECHOPAIR(", ", UBL_MESH_NUM_Y_POINTS - 1);
+ SERIAL_ECHOPGM(") ");
+
+ current_xi = blm.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0);
+ current_yi = blm.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
+
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
+ SERIAL_ECHOPGM(" ");
+
+ SERIAL_ECHOPAIR("(", UBL_MESH_NUM_X_POINTS - 1);
+ SERIAL_ECHOPAIR(",", UBL_MESH_NUM_Y_POINTS - 1);
+ SERIAL_ECHOLNPGM(")");
+
+ // if (map_type || 1) {
+ SERIAL_ECHOPAIR("(", UBL_MESH_MIN_X);
+ SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
+ SERIAL_CHAR(')');
+
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
+ SERIAL_ECHOPGM(" ");
+
+ SERIAL_ECHOPAIR("(", UBL_MESH_MAX_X);
+ SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
+ SERIAL_ECHOLNPGM(")");
+ // }
+
+ for (j = UBL_MESH_NUM_Y_POINTS - 1; j >= 0; j--) {
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
+ f = z_values[i][j];
+
+ // is the nozzle here? if so, mark the number
+ SERIAL_CHAR(i == current_xi && j == current_yi ? '[' : ' ');
+
+ if (isnan(f))
+ SERIAL_PROTOCOLPGM(" . ");
+ else {
+ // if we don't do this, the columns won't line up nicely
+ if (f >= 0.0) SERIAL_CHAR(' ');
+ SERIAL_PROTOCOL_F(f, 5);
+ idle();
+ }
+ if (i == current_xi && j == current_yi) // is the nozzle here? if so, finish marking the number
+ SERIAL_CHAR(']');
+ else
+ SERIAL_PROTOCOL(" ");
+
+ SERIAL_CHAR(' ');
+ }
+ SERIAL_EOL;
+ if (j) { // we want the (0,0) up tight against the block of numbers
+ SERIAL_CHAR(' ');
+ SERIAL_EOL;
+ }
+ }
+
+ // if (map_type) {
+ SERIAL_ECHOPAIR("(", int(UBL_MESH_MIN_X));
+ SERIAL_ECHOPAIR(",", int(UBL_MESH_MIN_Y));
+ SERIAL_ECHOPGM(") ");
+
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
+ SERIAL_ECHOPGM(" ");
+
+ SERIAL_ECHOPAIR("(", int(UBL_MESH_MAX_X));
+ SERIAL_ECHOPAIR(",", int(UBL_MESH_MIN_Y));
+ SERIAL_CHAR(')');
+ // }
+
+ SERIAL_ECHOPAIR("(", 0);
+ SERIAL_ECHOPAIR(",", 0);
+ SERIAL_ECHOPGM(") ");
+
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
+ SERIAL_ECHOPGM(" ");
+
+ SERIAL_ECHOPAIR("(", UBL_MESH_NUM_X_POINTS-1);
+ SERIAL_ECHOPAIR(",", 0);
+ SERIAL_CHAR(')');
+
+ SERIAL_CHAR(' ');
+ SERIAL_EOL;
+ }
+
+ bool bed_leveling::sanity_check() {
+ uint8_t error_flag = 0;
+
+ if (state.n_x != UBL_MESH_NUM_X_POINTS) {
+ SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_X_POINTS set wrong\n");
+ error_flag++;
+ }
+
+ if (state.n_y != UBL_MESH_NUM_Y_POINTS) {
+ SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_Y_POINTS set wrong\n");
+ error_flag++;
+ }
+
+ if (state.mesh_x_min != UBL_MESH_MIN_X) {
+ SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_X set wrong\n");
+ error_flag++;
+ }
+
+ if (state.mesh_y_min != UBL_MESH_MIN_Y) {
+ SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_Y set wrong\n");
+ error_flag++;
+ }
+
+ if (state.mesh_x_max != UBL_MESH_MAX_X) {
+ SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_X set wrong\n");
+ error_flag++;
+ }
+
+ if (state.mesh_y_max != UBL_MESH_MAX_Y) {
+ SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_Y set wrong\n");
+ error_flag++;
+ }
+
+ if (state.mesh_x_dist != MESH_X_DIST) {
+ SERIAL_PROTOCOLLNPGM("?MESH_X_DIST set wrong\n");
+ error_flag++;
+ }
+
+ if (state.mesh_y_dist != MESH_Y_DIST) {
+ SERIAL_PROTOCOLLNPGM("?MESH_Y_DIST set wrong\n");
+ error_flag++;
+ }
+
+ int k = E2END - sizeof(blm.state),
+ j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
+
+ if (j < 1) {
+ SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n");
+ error_flag++;
+ }
+
+ // SERIAL_PROTOCOLPGM("?sanity_check() return value: ");
+ // SERIAL_PROTOCOL(error_flag);
+ // SERIAL_EOL;
+
+ return !!error_flag;
+ }
+
+#endif // AUTO_BED_LEVELING_UBL
diff --git a/Marlin/UBL_G29.cpp b/Marlin/UBL_G29.cpp
new file mode 100644
index 000000000..7f4bdf368
--- /dev/null
+++ b/Marlin/UBL_G29.cpp
@@ -0,0 +1,1455 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see .
+ *
+ */
+
+#include "Marlin.h"
+#if ENABLED(AUTO_BED_LEVELING_UBL)
+ //#include "vector_3.h"
+ //#include "qr_solve.h"
+
+ #include "UBL.h"
+ #include "hex_print_routines.h"
+ #include "configuration_store.h"
+ #include "planner.h"
+ #include "ultralcd.h"
+
+ #include
+
+ void lcd_babystep_z();
+ void lcd_return_to_status();
+ bool lcd_clicked();
+ void lcd_implementation_clear();
+ void lcd_mesh_edit_setup(float inital);
+ float lcd_mesh_edit();
+ void lcd_z_offset_edit_setup(float);
+ float lcd_z_offset_edit();
+
+ extern float meshedit_done;
+ extern long babysteps_done;
+ extern float code_value_float();
+ extern bool code_value_bool();
+ extern bool code_has_value();
+ extern float probe_pt(float x, float y, bool, int);
+ extern float zprobe_zoffset;
+ extern bool set_probe_deployed(bool);
+ #define DEPLOY_PROBE() set_probe_deployed(true)
+ #define STOW_PROBE() set_probe_deployed(false)
+ bool ProbeStay = true;
+ float ubl_3_point_1_X = UBL_PROBE_PT_1_X;
+ float ubl_3_point_1_Y = UBL_PROBE_PT_1_Y;
+ float ubl_3_point_2_X = UBL_PROBE_PT_2_X;
+ float ubl_3_point_2_Y = UBL_PROBE_PT_2_Y;
+ float ubl_3_point_3_X = UBL_PROBE_PT_3_X;
+ float ubl_3_point_3_Y = UBL_PROBE_PT_3_Y;
+
+ #define SIZE_OF_LITTLE_RAISE 0
+ #define BIG_RAISE_NOT_NEEDED 0
+ extern void lcd_quick_feedback();
+
+ /**
+ * G29: Unified Bed Leveling by Roxy
+ */
+
+ // Transform required to compensate for bed level
+ //extern matrix_3x3 plan_bed_level_matrix;
+
+ /**
+ * Get the position applying the bed level matrix
+ */
+
+ //vector_3 plan_get_position();
+
+ // static void set_bed_level_equation_lsq(double* plane_equation_coefficients);
+ // static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3);
+
+ /**
+ * G29: Mesh Based Compensation System
+ *
+ * Parameters understood by this leveling system:
+ *
+ * A Activate Activate the Unified Bed Leveling system.
+ *
+ * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
+ * G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
+ * as a shim that the nozzle will pinch as it is lowered. The idea is that you
+ * can easily feel the nozzle getting to the same height by the amount of resistance
+ * the business card exhibits to movement. You should try to achieve the same amount
+ * of resistance on each probed point to facilitate accurate and repeatable measurements.
+ * You should be very careful not to drive the nozzle into the bussiness card with a
+ * lot of force as it is very possible to cause damage to your printer if your are
+ * careless. If you use the B option with G29 P2 B you can leave the number parameter off
+ * on its first use to enable measurement of the business card thickness. Subsequent usage
+ * of the B parameter can have the number previously measured supplied to the command.
+ * Incidently, you are much better off using something like a Spark Gap feeler gauge than
+ * something that compresses like a Business Card.
+ *
+ * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
+ * further refine the behaviour of several other commands. Issuing a G29 P1 C will
+ * continue the generation of a partially constructed Mesh without invalidating what has
+ * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
+ * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
+ * it indicates to use the current location instead of defaulting to the center of the print bed.
+ *
+ * D Disable Disable the Unified Bed Leveling system.
+ *
+ * E Stow_probe Stow the probe after each sampled point.
+ *
+ * F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the specified height,
+ * no correction is applied and natural printer kenimatics take over. If no number is specified
+ * for the command, 10mm is assummed to be reasonable.
+ *
+ * G # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on
+ * a side.
+ *
+ * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
+ * default is 5mm.
+ *
+ * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
+ * the X and Y parameter are used. If no number is specified, only the closest Mesh
+ * point to the location is invalidated. The M parameter is available as well to produce
+ * a map after the operation. This command is useful to invalidate a portion of the
+ * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
+ * attempting to invalidate an isolated bad point in the mesh, the M option will indicate
+ * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
+ * the bed and use this feature to select the center of the area (or cell) you want to
+ * invalidate.
+ *
+ * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
+ * command litterly performs a difference between two Mesh.
+ *
+ * L Load * Load Mesh from the previously activated location in the EEPROM.
+ *
+ * L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
+ * for subsequent Load and Store operations.
+ *
+ * O Map * Display the Mesh Map Topology.
+ * The parameter can be specified alone (ie. G29 O) or in combination with many of the
+ * other commands. The Mesh Map option works with all of the Phase
+ * commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O)
+ *
+ * N No Home G29 normally insists that a G28 has been performed. You can over rule this with an
+ * N option. In general, you should not do this. This can only be done safely with
+ * commands that do not move the nozzle.
+ *
+ * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
+ * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
+ * each additional Phase that processes it.
+ *
+ * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
+ * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
+ * was turned on. Setting the entire Mesh to Zero is a special case that allows
+ * a subsequent G or T leveling operation for backward compatability.
+ *
+ * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
+ * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
+ * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
+ * generated. This will be handled in Phase 2. If the Phase 1 command is given the
+ * C (Continue) parameter it does not invalidate the Mesh prior to automatically
+ * probing needed locations. This allows you to invalidate portions of the Mesh but still
+ * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
+ * parameter can be given to prioritize where the command should be trying to measure points.
+ * If the X and Y parameters are not specified the current probe position is used. Phase 1
+ * allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
+ * Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
+ * It will suspend generation of the Mesh if it sees the user request that. (This check is
+ * only done between probe points. You will need to press and hold the switch until the
+ * Phase 1 command can detect it.)
+ *
+ * P2 Phase 2 Probe areas of the Mesh that can not be automatically handled. Phase 2 respects an H
+ * parameter to control the height between Mesh points. The default height for movement
+ * between Mesh points is 5mm. A smaller number can be used to make this part of the
+ * calibration less time consuming. You will be running the nozzle down until it just barely
+ * touches the glass. You should have the nozzle clean with no plastic obstructing your view.
+ * Use caution and move slowly. It is possible to damage your printer if you are careless.
+ * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
+ * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
+ *
+ * The H parameter can be set negative if your Mesh dips in a large area. You can press
+ * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
+ * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
+ * area you are manually probing. Note that the command tries to start you in a corner
+ * of the bed where movement will be predictable. You can force the location to be used in
+ * the distance calculations by using the X and Y parameters. You may find it is helpful to
+ * print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where
+ * the nozzle will need to move in order to complete the command. The C parameter is
+ * available on the Phase 2 command also and indicates the search for points to measure should
+ * be done based on the current location of the nozzle.
+ *
+ * A B parameter is also available for this command and described up above. It places the
+ * manual probe subsystem into Business Card mode where the thickness of a business care is
+ * measured and then used to accurately set the nozzle height in all manual probing for the
+ * duration of the command. (S for Shim mode would be a better parameter name, but S is needed
+ * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
+ * better results if you use a flexible Shim that does not compress very much. That makes it
+ * easier for you to get the nozzle to press with similar amounts of force against the shim so you
+ * can get accurate measurements. As you are starting to touch the nozzle against the shim try
+ * to get it to grasp the shim with the same force as when you measured the thickness of the
+ * shim at the start of the command.
+ *
+ * Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
+ * of the Mesh being built.
+ *
+ * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is used to
+ * specify the Constant value to fill all invalid areas of the Mesh. If no C parameter is
+ * specified, a value of 0.0 is assumed. The R parameter can be given to specify the number
+ * of points to set. If the R parameter is specified the current nozzle position is used to
+ * find the closest points to alter unless the X and Y parameter are used to specify the fill
+ * location.
+ *
+ * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of
+ * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
+ * (More work and details on doing this later!)
+ * The System will search for the closest Mesh Point to the nozzle. It will move the
+ * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
+ * so it is just barely touching the bed. When the user clicks the control, the System
+ * will lock in that height for that point in the Mesh Compensation System.
+ *
+ * Phase 4 has several additional parameters that the user may find helpful. Phase 4
+ * can be started at a specific location by specifying an X and Y parameter. Phase 4
+ * can be requested to continue the adjustment of Mesh Points by using the R(epeat)
+ * parameter. If the Repetition count is not specified, it is assumed the user wishes
+ * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
+ * The command can be terminated early (or after the area of interest has been edited) by
+ * pressing and holding the encoder wheel until the system recognizes the exit request.
+ * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
+ *
+ * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
+ * information left on the printer's bed from the G26 command it is very straight forward
+ * and easy to fine tune the Mesh. One concept that is important to remember and that
+ * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
+ * If you have too little clearance and not much plastic was extruded in an area, you want to
+ * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
+ * RAISE the Mesh Point at that location.
+ *
+ *
+ * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
+ * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
+ * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
+ * execute a G29 P6 C .
+ *
+ * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
+ * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
+ * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
+ * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
+ * 0.000 at the Z Home location.
+ *
+ * Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
+ * command is not anticipated to be of much value to the typical user. It is intended
+ * for developers to help them verify correct operation of the Unified Bed Leveling System.
+ *
+ * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
+ * current state of the Unified Bed Leveling system in the EEPROM.
+ *
+ * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
+ * for subsequent Load and Store operations. It will also store the current state of
+ * the Unified Bed Leveling system in the EEPROM.
+ *
+ * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into
+ * the system at a later date. The text generated can be saved and later sent by PronterFace or
+ * Repetier Host to reconstruct the current mesh on another machine.
+ *
+ * T 3-Point Perform a 3 Point Bed Leveling on the current Mesh
+ *
+ * W What? Display valuable data the Unified Bed Leveling System knows.
+ *
+ * X # * * Specify X Location for this line of commands
+ *
+ * Y # * * Specify Y Location for this line of commands
+ *
+ * Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
+ * by just doing a G29 Z
+ *
+ * Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference.
+ * zprobe_zoffset is added to the calculation.
+ *
+ *
+ * Release Notes:
+ * You MUST do a M502 & M500 pair of commands to initialize the storage. Failure to do this
+ * will cause all kinds of problems. Enabling EEPROM Storage is highly recommended. With
+ * EEPROM Storage of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and
+ * G29 P0 G respectively.)
+ *
+ * Z-Probe Sleds are not currently fully supported. There were too many complications caused
+ * by them to support them in the Unified Bed Leveling code. Support for them will be handled
+ * better in the upcoming Z-Probe Object that will happen during the Code Clean Up phase. (That
+ * is what they really are: A special case of the Z-Probe.) When a Z-Probe Object appears, it
+ * should slip in under the Unified Bed Leveling code without major trauma.
+ *
+ * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
+ * the Unified Bed Leveling probes points further and further away from the starting location. (The
+ * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
+ * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
+ * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
+ * perform a small print and check out your settings quicker. You do not need to populate the
+ * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
+ * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
+ * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
+ *
+ * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
+ * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
+ * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
+ * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
+ * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
+ * this is going to be helpful to the users!)
+ *
+ * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
+ * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining thier contributions
+ * we now have the functionality and features of all three systems combined.
+ */
+
+ int Unified_Bed_Leveling_EEPROM_start = -1;
+ int UBL_has_control_of_LCD_Panel = 0;
+ volatile int G29_encoderDiff = 0; // This is volatile because it is getting changed at interrupt time.
+
+ // We keep the simple parameter flags and values as 'static' because we break out the
+ // parameter parsing into a support routine.
+
+ static int G29_Verbose_Level = 0, Test_Value = 0,
+ Phase_Value = -1, Repetition_Cnt = 1;
+ static bool Repeat_Flag = UBL_OK, C_Flag = false, X_Flag = UBL_OK, Y_Flag = UBL_OK, Statistics_Flag = UBL_OK, Business_Card_Mode = false;
+ static float X_Pos = 0.0, Y_Pos = 0.0, Height_Value = 5.0, measured_z, card_thickness = 0.0, Constant = 0.0;
+ static int Storage_Slot = 0, Test_Pattern = 0;
+
+ #if ENABLED(ULTRA_LCD)
+ void lcd_setstatus(const char* message, bool persist);
+ #endif
+
+ void gcode_G29() {
+ mesh_index_pair location;
+ int i, j, k;
+ float Z1, Z2, Z3;
+
+ G29_Verbose_Level = 0; // These may change, but let's get some reasonable values into them.
+ Repeat_Flag = UBL_OK;
+ Repetition_Cnt = 1;
+ C_Flag = false;
+
+ SERIAL_PROTOCOLPGM("Unified_Bed_Leveling_EEPROM_start=");
+ SERIAL_PROTOCOLLN(Unified_Bed_Leveling_EEPROM_start);
+
+ if (Unified_Bed_Leveling_EEPROM_start < 0) {
+ SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it ");
+ SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
+ return;
+ }
+
+ if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first
+ gcode_G28();
+
+ if (G29_Parameter_Parsing()) return; // abort if parsing the simple parameters causes a problem,
+
+ // Invalidate Mesh Points. This command is a little bit asymetrical because
+ // it directly specifies the repetition count and does not use the 'R' parameter.
+ if (code_seen('I')) {
+ Repetition_Cnt = code_has_value() ? code_value_int() : 1;
+ while (Repetition_Cnt--) {
+ location = find_closest_mesh_point_of_type(REAL, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position
+ if (location.x_index < 0) {
+ SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
+ break; // No more invalid Mesh Points to populate
+ }
+ z_values[location.x_index][location.y_index] = NAN;
+ }
+ SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
+ }
+
+ if (code_seen('Q')) {
+
+ if (code_has_value()) Test_Pattern = code_value_int();
+
+ if (Test_Pattern < 0 || Test_Pattern > 4) {
+ SERIAL_PROTOCOLLNPGM("Invalid Test_Pattern value. (0-4)\n");
+ return;
+ }
+ SERIAL_PROTOCOLLNPGM("Loading Test_Pattern values.\n");
+ switch (Test_Pattern) {
+ case 0:
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { // Create a bowl shape. This is
+ for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { // similar to what a user would see with
+ Z1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - i; // a poorly calibrated Delta.
+ Z2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - j;
+ z_values[i][j] += 2.0 * HYPOT(Z1, Z2);
+ }
+ }
+ break;
+ case 1:
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { // Create a diagonal line several Mesh
+ z_values[i][i] += 9.999; // cells thick that is raised
+ if (i < UBL_MESH_NUM_Y_POINTS - 1)
+ z_values[i][i + 1] += 9.999; // We want the altered line several mesh points thick
+ if (i > 0)
+ z_values[i][i - 1] += 9.999; // We want the altered line several mesh points thick
+ }
+ break;
+ case 2:
+ // Allow the user to specify the height because 10mm is
+ // a little bit extreme in some cases.
+ for (i = (UBL_MESH_NUM_X_POINTS) / 3.0; i < 2 * ((UBL_MESH_NUM_X_POINTS) / 3.0); i++) // Create a rectangular raised area in
+ for (j = (UBL_MESH_NUM_Y_POINTS) / 3.0; j < 2 * ((UBL_MESH_NUM_Y_POINTS) / 3.0); j++) // the center of the bed
+ z_values[i][j] += code_seen('C') ? Constant : 9.99;
+ break;
+ case 3:
+ break;
+ }
+ }
+
+ if (code_seen('P')) {
+ Phase_Value = code_value_int();
+ if (Phase_Value < 0 || Phase_Value > 7) {
+ SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
+ return;
+ }
+ switch (Phase_Value) {
+ //
+ // Zero Mesh Data
+ //
+ case 0:
+ blm.reset();
+ SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
+ break;
+ //
+ // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
+ //
+ case 1:
+ if (!code_seen('C') ) {
+ blm.invalidate();
+ SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
+ }
+ if (G29_Verbose_Level > 1) {
+ SERIAL_ECHOPGM("Probing Mesh Points Closest to (");
+ SERIAL_ECHO(X_Pos);
+ SERIAL_ECHOPAIR(",", Y_Pos);
+ SERIAL_PROTOCOLLNPGM(")\n");
+ }
+ probe_entire_mesh( X_Pos+X_PROBE_OFFSET_FROM_EXTRUDER, Y_Pos+Y_PROBE_OFFSET_FROM_EXTRUDER,
+ code_seen('O') || code_seen('M'), code_seen('E'));
+ break;
+ //
+ // Manually Probe Mesh in areas that can not be reached by the probe
+ //
+ case 2:
+ SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
+ do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
+ if (!X_Flag && !Y_Flag) { // use a good default location for the path
+ X_Pos = X_MIN_POS;
+ Y_Pos = Y_MIN_POS;
+ if (X_PROBE_OFFSET_FROM_EXTRUDER > 0) // The flipped > and < operators on these two comparisons is
+ X_Pos = X_MAX_POS; // intentional. It should cause the probed points to follow a
+
+ if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0) // nice path on Cartesian printers. It may make sense to
+ Y_Pos = Y_MAX_POS; // have Delta printers default to the center of the bed.
+
+ } // For now, until that is decided, it can be forced with the X
+ // and Y parameters.
+ if (code_seen('C')) {
+ X_Pos = current_position[X_AXIS];
+ Y_Pos = current_position[Y_AXIS];
+ }
+
+ Height_Value = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
+
+ if ((Business_Card_Mode = code_seen('B'))) {
+ card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(Height_Value);
+
+ if (fabs(card_thickness) > 1.5) {
+ SERIAL_PROTOCOLLNPGM("?Error in Business Card measurment.\n");
+ return;
+ }
+ }
+ manually_probe_remaining_mesh( X_Pos, Y_Pos, Height_Value, card_thickness, code_seen('O') || code_seen('M'));
+ break;
+ //
+ // Populate invalid Mesh areas with a constant
+ //
+ case 3:
+ Height_Value = 0.0; // Assume 0.0 until proven otherwise
+ if (code_seen('C')) Height_Value = Constant;
+ // If no repetition is specified, do the whole Mesh
+ if (!Repeat_Flag) Repetition_Cnt = 9999;
+ while (Repetition_Cnt--) {
+ location = find_closest_mesh_point_of_type( INVALID, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position
+ if (location.x_index < 0) break; // No more invalid Mesh Points to populate
+ z_values[location.x_index][location.y_index] = Height_Value;
+ }
+ break;
+ //
+ // Fine Tune (Or Edit) the Mesh
+ //
+ case 4:
+ fine_tune_mesh(X_Pos, Y_Pos, Height_Value, code_seen('O') || code_seen('M'));
+ break;
+ case 5:
+ Find_Mean_Mesh_Height();
+ break;
+ case 6:
+ Shift_Mesh_Height();
+ break;
+
+ case 10:
+ UBL_has_control_of_LCD_Panel++; // Debug code... Pan no attention to this stuff
+ SERIAL_ECHO_START;
+ SERIAL_ECHOPGM("Checking G29 has control of LCD Panel:\n");
+ while(!G29_lcd_clicked()) {
+ idle();
+ delay(250);
+ SERIAL_PROTOCOL(G29_encoderDiff);
+ G29_encoderDiff = 0;
+ SERIAL_EOL;
+ }
+ while (G29_lcd_clicked()) idle();
+ UBL_has_control_of_LCD_Panel = 0;;
+ SERIAL_ECHOPGM("G29 giving back control of LCD Panel.\n");
+ break;
+ }
+ }
+
+ if (code_seen('T')) {
+ Z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset;
+ Z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset;
+ Z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset;
+
+ // We need to adjust Z1, Z2, Z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
+ // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
+
+ Z1 -= blm.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y);
+ Z2 -= blm.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y);
+ Z3 -= blm.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y);
+
+ do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
+ tilt_mesh_based_on_3pts(Z1, Z2, Z3);
+ }
+
+ //
+ // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
+ // good to have the extra information. Soon... we prune this to just a few items
+ //
+ if (code_seen('W')) G29_What_Command();
+
+ //
+ // When we are fully debugged, the EEPROM dump command will get deleted also. But
+ // right now, it is good to have the extra information. Soon... we prune this.
+ //
+ if (code_seen('J')) G29_EEPROM_Dump(); // EEPROM Dump
+
+ //
+ // When we are fully debugged, this may go away. But there are some valid
+ // use cases for the users. So we can wait and see what to do with it.
+ //
+
+ if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
+ G29_Kompare_Current_Mesh_to_Stored_Mesh();
+
+ //
+ // Load a Mesh from the EEPROM
+ //
+
+ if (code_seen('L')) { // Load Current Mesh Data
+ Storage_Slot = code_has_value() ? code_value_int() : blm.state.EEPROM_storage_slot;
+
+ k = E2END - sizeof(blm.state);
+ j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
+
+ if (Storage_Slot < 0 || Storage_Slot >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
+ SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
+ return;
+ }
+ blm.load_mesh(Storage_Slot);
+ blm.state.EEPROM_storage_slot = Storage_Slot;
+ if (Storage_Slot != blm.state.EEPROM_storage_slot)
+ blm.store_state();
+ SERIAL_PROTOCOLLNPGM("Done.\n");
+ }
+
+ //
+ // Store a Mesh in the EEPROM
+ //
+
+ if (code_seen('S')) { // Store (or Save) Current Mesh Data
+ Storage_Slot = code_has_value() ? code_value_int() : blm.state.EEPROM_storage_slot;
+
+ if (Storage_Slot == -1) { // Special case, we are going to 'Export' the mesh to the
+ SERIAL_ECHOPGM("G29 I 999\n"); // host in a form it can be reconstructed on a different machine
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
+ for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
+ if (!isnan(z_values[i][j])) {
+ SERIAL_ECHOPAIR("M421 I ", i);
+ SERIAL_ECHOPAIR(" J ", j);
+ SERIAL_ECHOPGM(" Z ");
+ SERIAL_PROTOCOL_F(z_values[i][j], 6);
+ SERIAL_EOL;
+ }
+ }
+ }
+ return;
+ }
+
+ int k = E2END - sizeof(blm.state),
+ j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
+
+ if (Storage_Slot < 0 || Storage_Slot >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
+ SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
+ SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
+ goto LEAVE;
+ }
+ blm.store_mesh(Storage_Slot);
+ blm.state.EEPROM_storage_slot = Storage_Slot;
+ //
+ // if (Storage_Slot != blm.state.EEPROM_storage_slot)
+ blm.store_state(); // Always save an updated copy of the UBL State info
+
+ SERIAL_PROTOCOLLNPGM("Done.\n");
+ }
+
+ if (code_seen('O') || code_seen('M')) {
+ i = code_has_value() ? code_value_int() : 0;
+ blm.display_map(i);
+ }
+
+ if (code_seen('Z')) {
+ if (code_has_value()) {
+ blm.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
+ }
+ else {
+ save_UBL_active_state_and_disable();
+ //measured_z = probe_pt(X_Pos + X_PROBE_OFFSET_FROM_EXTRUDER, Y_Pos+Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, G29_Verbose_Level);
+
+ measured_z = 1.5;
+ do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
+ // The user is not going to be locking in a new Z-Offset very often so
+ // it won't be that painful to spin the Encoder Wheel for 1.5mm
+ lcd_implementation_clear();
+ lcd_z_offset_edit_setup(measured_z);
+ do {
+ measured_z = lcd_z_offset_edit();
+ idle();
+ do_blocking_move_to_z(measured_z);
+ } while (!G29_lcd_clicked());
+
+ UBL_has_control_of_LCD_Panel = 1; // There is a race condition for the Encoder Wheel getting clicked.
+ // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune( )
+ // or here. So, until we are done looking for a long Encoder Wheel Press,
+ // we need to take control of the panel
+ millis_t nxt = millis() + 1500UL;
+ lcd_return_to_status();
+ while (G29_lcd_clicked()) { // debounce and watch for abort
+ idle();
+ if (ELAPSED(millis(), nxt)) {
+ SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
+ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+ lcd_setstatus("Z-Offset Stopped", true);
+
+ while (G29_lcd_clicked()) idle();
+
+ UBL_has_control_of_LCD_Panel = 0;
+ restore_UBL_active_state_and_leave();
+ goto LEAVE;
+ }
+ }
+ UBL_has_control_of_LCD_Panel = 0;
+ delay(20); // We don't want any switch noise.
+
+ blm.state.z_offset = measured_z;
+
+ lcd_implementation_clear();
+ restore_UBL_active_state_and_leave();
+ }
+ }
+
+ LEAVE:
+ #if ENABLED(ULTRA_LCD)
+ lcd_setstatus(" ", true);
+ lcd_quick_feedback();
+ #endif
+ UBL_has_control_of_LCD_Panel = 0;
+ }
+
+ void Find_Mean_Mesh_Height() {
+ int i, j, n;
+ float sum, sum_of_diff_squared, sigma, difference, mean;
+
+ sum = sum_of_diff_squared = 0.0;
+ n = 0;
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
+ for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
+ if (!isnan(z_values[i][j])) {
+ sum += z_values[i][j];
+ n++;
+ }
+ }
+ }
+ mean = sum / n;
+ //
+ // Now do the sumation of the squares of difference from mean
+ //
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
+ for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
+ if (!isnan(z_values[i][j])) {
+ difference = (z_values[i][j] - mean);
+ sum_of_diff_squared += difference * difference;
+ }
+ }
+ }
+ SERIAL_ECHOLNPAIR("# of samples: ", n);
+ SERIAL_ECHOPGM("Mean Mesh Height: ");
+ SERIAL_PROTOCOL_F(mean, 6);
+ SERIAL_EOL;
+
+ sigma = sqrt( sum_of_diff_squared / (n + 1));
+ SERIAL_ECHOPGM("Standard Deviation: ");
+ SERIAL_PROTOCOL_F(sigma, 6);
+ SERIAL_EOL;
+
+ if (C_Flag)
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++)
+ for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++)
+ if (!isnan(z_values[i][j]))
+ z_values[i][j] -= mean + Constant;
+ }
+
+ void Shift_Mesh_Height( ) {
+ for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++)
+ for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++)
+ if (!isnan(z_values[i][j]))
+ z_values[i][j] += Constant;
+ }
+
+ // probe_entire_mesh(X_Pos, Y_Pos) probes all invalidated locations of the mesh that can be reached
+ // by the probe. It attempts to fill in locations closest to the nozzle's start location first.
+
+ void probe_entire_mesh(float X_Pos, float Y_Pos, bool do_UBL_MESH_Map, bool stow_probe) {
+ mesh_index_pair location;
+ float xProbe, yProbe, measured_z;
+
+ UBL_has_control_of_LCD_Panel++;
+ save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
+ DEPLOY_PROBE();
+
+ do {
+ if (G29_lcd_clicked()) {
+ SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
+ lcd_quick_feedback();
+ while (G29_lcd_clicked()) idle();
+ UBL_has_control_of_LCD_Panel = 0;
+ STOW_PROBE();
+ restore_UBL_active_state_and_leave();
+ return;
+ }
+ location = find_closest_mesh_point_of_type( INVALID, X_Pos, Y_Pos, 1, NULL); // the '1' says we want the location to be relative to the probe
+ if (location.x_index>=0 && location.y_index>=0) {
+ xProbe = blm.map_x_index_to_bed_location(location.x_index);
+ yProbe = blm.map_y_index_to_bed_location(location.y_index);
+ if (xProbe < MIN_PROBE_X || xProbe > MAX_PROBE_X || yProbe < MIN_PROBE_Y || yProbe > MAX_PROBE_Y) {
+ SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
+ UBL_has_control_of_LCD_Panel = 0;
+ goto LEAVE;
+ }
+ measured_z = probe_pt(xProbe, yProbe, stow_probe, G29_Verbose_Level);
+ z_values[location.x_index][location.y_index] = measured_z + Z_PROBE_OFFSET_FROM_EXTRUDER;
+ }
+
+ if (do_UBL_MESH_Map) blm.display_map(1);
+ } while (location.x_index >= 0 && location.y_index >= 0);
+
+ LEAVE:
+ STOW_PROBE();
+ restore_UBL_active_state_and_leave();
+
+ X_Pos = constrain( X_Pos-X_PROBE_OFFSET_FROM_EXTRUDER, X_MIN_POS, X_MAX_POS);
+ Y_Pos = constrain( Y_Pos-Y_PROBE_OFFSET_FROM_EXTRUDER, Y_MIN_POS, Y_MAX_POS);
+
+ do_blocking_move_to_xy(X_Pos, Y_Pos);
+ }
+
+ struct vector tilt_mesh_based_on_3pts(float pt1, float pt2, float pt3) {
+ struct vector v1, v2, normal;
+ float c, d, t;
+ int i, j;
+
+ v1.dx = (ubl_3_point_1_X - ubl_3_point_2_X);
+ v1.dy = (ubl_3_point_1_Y - ubl_3_point_2_Y);
+ v1.dz = (pt1 - pt2);
+
+ v2.dx = (ubl_3_point_3_X - ubl_3_point_2_X);
+ v2.dy = (ubl_3_point_3_Y - ubl_3_point_2_Y);
+ v2.dz = (pt3 - pt2);
+
+ // do cross product
+
+ normal.dx = v1.dy * v2.dz - v1.dz * v2.dy;
+ normal.dy = v1.dz * v2.dx - v1.dx * v2.dz;
+ normal.dz = v1.dx * v2.dy - v1.dy * v2.dx;
+
+ // printf("[%f,%f,%f] ", normal.dx, normal.dy, normal.dz);
+
+ normal.dx /= normal.dz; // This code does two things. This vector is normal to the tilted plane.
+ normal.dy /= normal.dz; // However, we don't know its direction. We need it to point up. So if
+ normal.dz /= normal.dz; // Z is negative, we need to invert the sign of all components of the vector
+ // We also need Z to be unity because we are going to be treating this triangle
+ // as the sin() and cos() of the bed's tilt
+
+ //
+ // All of 3 of these points should give us the same d constant
+ //
+ t = normal.dx * ubl_3_point_1_X + normal.dy * ubl_3_point_1_Y;
+ d = t + normal.dz * pt1;
+ c = d - t;
+ SERIAL_ECHOPGM("d from 1st point: ");
+ SERIAL_PROTOCOL_F(d, 6);
+ SERIAL_ECHOPGM(" c: ");
+ SERIAL_PROTOCOL_F(c, 6);
+ SERIAL_EOL;
+ t = normal.dx * ubl_3_point_2_X + normal.dy * ubl_3_point_2_Y;
+ d = t + normal.dz * pt2;
+ c = d - t;
+ SERIAL_ECHOPGM("d from 2nd point: ");
+ SERIAL_PROTOCOL_F(d, 6);
+ SERIAL_ECHOPGM(" c: ");
+ SERIAL_PROTOCOL_F(c, 6);
+ SERIAL_EOL;
+ t = normal.dx * ubl_3_point_3_X + normal.dy * ubl_3_point_3_Y;
+ d = t + normal.dz * pt3;
+ c = d - t;
+ SERIAL_ECHOPGM("d from 3rd point: ");
+ SERIAL_PROTOCOL_F(d, 6);
+ SERIAL_ECHOPGM(" c: ");
+ SERIAL_PROTOCOL_F(c, 6);
+ SERIAL_EOL;
+
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
+ for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
+ c = -((normal.dx * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.dy * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d);
+ z_values[i][j] += c;
+ }
+ }
+ return normal;
+ }
+
+ float use_encoder_wheel_to_measure_point() {
+ UBL_has_control_of_LCD_Panel++;
+ while (!G29_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
+ idle();
+ if (G29_encoderDiff != 0) {
+ float new_z;
+ // We define a new variable so we can know ahead of time where we are trying to go.
+ // The reason is we want G29_encoderDiff cleared so an interrupt can update it even before the move
+ // is complete. (So the dial feels responsive to user)
+ new_z = current_position[Z_AXIS] + 0.01 * float(G29_encoderDiff);
+ G29_encoderDiff = 0;
+ do_blocking_move_to_z(new_z);
+ }
+ }
+ while (G29_lcd_clicked()) idle(); // debounce and wait
+ UBL_has_control_of_LCD_Panel--;
+ return current_position[Z_AXIS];
+ }
+
+ float measure_business_card_thickness(float Height_Value) {
+ float Z1, Z2;
+
+ UBL_has_control_of_LCD_Panel++;
+ save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
+
+ SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
+ do_blocking_move_to_z(Height_Value);
+ do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
+ //, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
+
+ Z1 = use_encoder_wheel_to_measure_point();
+ do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
+ UBL_has_control_of_LCD_Panel = 0;
+
+ SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
+ Z2 = use_encoder_wheel_to_measure_point();
+ do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
+
+ if (G29_Verbose_Level > 1) {
+ SERIAL_ECHOPGM("Business Card is: ");
+ SERIAL_PROTOCOL_F(abs(Z1 - Z2), 6);
+ SERIAL_PROTOCOLLNPGM("mm thick.");
+ }
+ restore_UBL_active_state_and_leave();
+ return abs(Z1 - Z2);
+ }
+
+ void manually_probe_remaining_mesh(float X_Pos, float Y_Pos, float z_clearance, float card_thickness, bool do_UBL_MESH_Map) {
+ mesh_index_pair location;
+ float last_x, last_y, dx, dy,
+ xProbe, yProbe;
+ unsigned long cnt;
+
+ UBL_has_control_of_LCD_Panel++;
+ last_x = last_y = -9999.99;
+ save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
+ do_blocking_move_to_z(z_clearance);
+ do_blocking_move_to_xy(X_Pos, Y_Pos);
+
+ do {
+ if (do_UBL_MESH_Map) blm.display_map(1);
+
+ location = find_closest_mesh_point_of_type(INVALID, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position
+ // It doesn't matter if the probe can not reach the
+ // NAN location. This is a manual probe.
+ if (location.x_index < 0 && location.y_index < 0) continue;
+
+ xProbe = blm.map_x_index_to_bed_location(location.x_index);
+ yProbe = blm.map_y_index_to_bed_location(location.y_index);
+ if (xProbe < (X_MIN_POS) || xProbe > (X_MAX_POS) || yProbe < (Y_MIN_POS) || yProbe > (Y_MAX_POS)) {
+ SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
+ UBL_has_control_of_LCD_Panel = 0;
+ goto LEAVE;
+ }
+
+ dx = xProbe - last_x;
+ dy = yProbe - last_y;
+
+ if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
+ do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
+ else
+ do_blocking_move_to_z(z_clearance);
+
+ last_x = xProbe;
+ last_y = yProbe;
+ do_blocking_move_to_xy(xProbe, yProbe);
+
+ while (!G29_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
+ idle();
+ if (G29_encoderDiff) {
+ float new_z;
+ // We define a new variable so we can know ahead of time where we are trying to go.
+ // The reason is we want G29_encoderDiff cleared so an interrupt can update it even before the move
+ // is complete. (So the dial feels responsive to user)
+ new_z = current_position[Z_AXIS] + float(G29_encoderDiff) / 100.0;
+ G29_encoderDiff = 0;
+ do_blocking_move_to_z(new_z);
+ }
+ }
+
+ cnt = millis();
+ while (G29_lcd_clicked()) { // debounce and watch for abort
+ idle();
+ if (millis() - cnt > 1500L) {
+ SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
+ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+ lcd_quick_feedback();
+ while (G29_lcd_clicked()) idle();
+ UBL_has_control_of_LCD_Panel = 0;
+ restore_UBL_active_state_and_leave();
+ return;
+ }
+ }
+
+ z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
+ if (G29_Verbose_Level > 2) {
+ SERIAL_PROTOCOL("Mesh Point Measured at: ");
+ SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
+ SERIAL_EOL;
+ }
+ } while (location.x_index >= 0 && location.y_index >= 0);
+
+ if (do_UBL_MESH_Map) blm.display_map(1);
+
+ LEAVE:
+ restore_UBL_active_state_and_leave();
+ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+ do_blocking_move_to_xy(X_Pos, Y_Pos);
+ }
+
+ bool G29_Parameter_Parsing() {
+
+ #if ENABLED(ULTRA_LCD)
+ lcd_setstatus("Doing G29 UBL !", true);
+ lcd_quick_feedback();
+ #endif
+
+ X_Pos = current_position[X_AXIS];
+ Y_Pos = current_position[Y_AXIS];
+ X_Flag = Y_Flag = Repeat_Flag = UBL_OK;
+ Constant = 0.0;
+ Repetition_Cnt = 1;
+
+ if ((X_Flag = code_seen('X'))) {
+ X_Pos = code_value_float();
+ if (X_Pos < X_MIN_POS || X_Pos > X_MAX_POS) {
+ SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
+ return UBL_ERR;
+ }
+ }
+
+ if ((Y_Flag = code_seen('Y'))) {
+ Y_Pos = code_value_float();
+ if (Y_Pos < Y_MIN_POS || Y_Pos > Y_MAX_POS) {
+ SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
+ return UBL_ERR;
+ }
+ }
+
+ if (X_Flag != Y_Flag) {
+ SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
+ return UBL_ERR;
+ }
+
+ G29_Verbose_Level = 0;
+ if (code_seen('V')) {
+ G29_Verbose_Level = code_value_int();
+ if (G29_Verbose_Level < 0 || G29_Verbose_Level > 4) {
+ SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
+ return UBL_ERR;
+ }
+ }
+
+ if (code_seen('A')) { // Activate the Unified Bed Leveling System
+ blm.state.active = 1;
+ SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
+ blm.store_state();
+ }
+
+ if ((C_Flag = code_seen('C')) && code_has_value())
+ Constant = code_value_float();
+
+ if (code_seen('D')) { // Disable the Unified Bed Leveling System
+ blm.state.active = 0;
+ SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
+ blm.store_state();
+ }
+
+ if (code_seen('F')) {
+ blm.state.G29_Correction_Fade_Height = 10.00;
+ if (code_has_value()) {
+ blm.state.G29_Correction_Fade_Height = code_value_float();
+ blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height;
+ }
+ if (blm.state.G29_Correction_Fade_Height<0.0 || blm.state.G29_Correction_Fade_Height>100.0) {
+ SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausable.\n");
+ blm.state.G29_Correction_Fade_Height = 10.00;
+ blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height;
+ return UBL_ERR;
+ }
+ }
+
+ if ((Repeat_Flag = code_seen('R'))) {
+ Repetition_Cnt = code_has_value() ? code_value_int() : 9999;
+ if (Repetition_Cnt < 1) {
+ SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
+ return UBL_ERR;
+ }
+ }
+ return UBL_OK;
+ }
+
+ /**
+ * This function goes away after G29 debug is complete. But for right now, it is a handy
+ * routine to dump binary data structures.
+ */
+ void dump(char *str, float f) {
+ char *ptr;
+
+ SERIAL_PROTOCOL(str);
+ SERIAL_PROTOCOL_F(f, 8);
+ SERIAL_PROTOCOL(" ");
+ ptr = (char *)&f;
+ for (uint8_t i = 0; i < 4; i++) {
+ SERIAL_PROTOCOL(" ");
+ prt_hex_byte(*ptr++);
+ }
+ SERIAL_PROTOCOL(" isnan()=");
+ SERIAL_PROTOCOL(isnan(f));
+ SERIAL_PROTOCOL(" isinf()=");
+ SERIAL_PROTOCOL(isinf(f));
+
+ constexpr float g = INFINITY;
+ if (f == -g)
+ SERIAL_PROTOCOL(" Minus Infinity detected.");
+
+ SERIAL_EOL;
+ }
+
+ static int UBL_state_at_invokation = 0,
+ UBL_state_recursion_chk = 0;
+
+ void save_UBL_active_state_and_disable() {
+ UBL_state_recursion_chk++;
+ if (UBL_state_recursion_chk != 1) {
+ SERIAL_ECHOLNPGM("save_UBL_active_state_and_disabled() called multiple times in a row.");
+ lcd_setstatus("save_UBL_active() error", true);
+ lcd_quick_feedback();
+ return;
+ }
+ UBL_state_at_invokation = blm.state.active;
+ blm.state.active = 0;
+ return;
+ }
+
+ void restore_UBL_active_state_and_leave() {
+ if (--UBL_state_recursion_chk) {
+ SERIAL_ECHOLNPGM("restore_UBL_active_state_and_leave() called too many times.");
+ lcd_setstatus("restore_UBL_active() error", true);
+ lcd_quick_feedback();
+ return;
+ }
+ blm.state.active = UBL_state_at_invokation;
+ }
+
+ /**
+ * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
+ * good to have the extra information. Soon... we prune this to just a few items
+ */
+ void G29_What_Command() {
+ int k, i;
+ k = E2END - Unified_Bed_Leveling_EEPROM_start;
+ Statistics_Flag++;
+
+ SERIAL_PROTOCOLPGM("Version #4: 10/30/2016 branch \n");
+ SERIAL_PROTOCOLPGM("Unified Bed Leveling System ");
+ if (blm.state.active)
+ SERIAL_PROTOCOLPGM("Active.");
+ else
+ SERIAL_PROTOCOLPGM("Inactive.");
+ SERIAL_PROTOCOLLNPGM(" ------------------------------------- <----<<<"); // These arrows are just to help me
+
+ if (blm.state.EEPROM_storage_slot == 0xFFFF) {
+ SERIAL_PROTOCOLPGM("No Mesh Loaded.");
+ SERIAL_PROTOCOLLNPGM(" ------------------------------------- <----<<<"); // These arrows are just to help me
+ // find this info buried in the clutter
+ }
+ else {
+ SERIAL_PROTOCOLPGM("Mesh: ");
+ prt_hex_word(blm.state.EEPROM_storage_slot);
+ SERIAL_PROTOCOLPGM(" Loaded. ");
+ SERIAL_PROTOCOLLNPGM(" -------------------------------------------------------- <----<<<"); // These arrows are just to help me
+ // find this info buried in the clutter
+ }
+
+ SERIAL_ECHOPAIR("\nG29_Correction_Fade_Height : ", blm.state.G29_Correction_Fade_Height );
+ SERIAL_PROTOCOLPGM(" ------------------------------------- <----<<< \n"); // These arrows are just to help me
+ // find this info buried in the clutter
+ idle();
+
+ SERIAL_ECHOPGM("z_offset: ");
+ SERIAL_PROTOCOL_F(blm.state.z_offset, 6);
+ SERIAL_PROTOCOLLNPGM(" ------------------------------------------------------------ <----<<<");
+
+ SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
+ SERIAL_PROTOCOL_F( blm.map_x_index_to_bed_location(i), 1);
+ SERIAL_PROTOCOLPGM(" ");
+ }
+ SERIAL_EOL;
+ SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
+ for (i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
+ SERIAL_PROTOCOL_F( blm.map_y_index_to_bed_location(i), 1);
+ SERIAL_PROTOCOLPGM(" ");
+ }
+ SERIAL_EOL;
+
+ #if HAS_KILL
+ SERIAL_ECHOPAIR("Kill pin on :", KILL_PIN);
+ SERIAL_ECHOLNPAIR(" state:", READ(KILL_PIN));
+ #endif
+
+ SERIAL_ECHOLNPAIR("UBL_state_at_invokation :", UBL_state_at_invokation);
+ SERIAL_ECHOLNPAIR("UBL_state_recursion_chk :", UBL_state_recursion_chk);
+
+ SERIAL_EOL;
+ SERIAL_PROTOCOLPGM("Free EEPROM space starts at: 0x");
+ prt_hex_word(Unified_Bed_Leveling_EEPROM_start);
+ SERIAL_EOL;
+ idle();
+
+ SERIAL_PROTOCOLPGM("end of EEPROM : ");
+ prt_hex_word(E2END);
+ SERIAL_EOL;
+ idle();
+
+ SERIAL_PROTOCOLLNPAIR("sizeof(blm) : ", (int)sizeof(blm));
+ SERIAL_EOL;
+ SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
+ SERIAL_EOL;
+
+ SERIAL_PROTOCOLPGM("EEPROM free for UBL: 0x");
+ prt_hex_word(k);
+ SERIAL_EOL;
+ idle();
+
+ SERIAL_PROTOCOLPGM("EEPROM can hold 0x");
+ prt_hex_word(k / sizeof(z_values));
+ SERIAL_PROTOCOLPGM(" meshes. \n");
+
+ SERIAL_PROTOCOLPGM("sizeof(stat) :");
+ prt_hex_word(sizeof(blm.state));
+ SERIAL_EOL;
+ idle();
+
+ SERIAL_ECHOPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS);
+ SERIAL_ECHOPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS);
+ SERIAL_ECHOPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X);
+ SERIAL_ECHOPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y);
+ SERIAL_ECHOPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X);
+ SERIAL_ECHOPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y);
+ SERIAL_ECHOPGM("\nMESH_X_DIST ");
+ SERIAL_PROTOCOL_F(MESH_X_DIST, 6);
+ SERIAL_ECHOPGM("\nMESH_Y_DIST ");
+ SERIAL_PROTOCOL_F(MESH_Y_DIST, 6);
+ SERIAL_EOL;
+ idle();
+
+ SERIAL_ECHOPAIR("\nsizeof(block_t): ", (int)sizeof(block_t));
+ SERIAL_ECHOPAIR("\nsizeof(planner.block_buffer): ", (int)sizeof(planner.block_buffer));
+ SERIAL_ECHOPAIR("\nsizeof(char): ", (int)sizeof(char));
+ SERIAL_ECHOPAIR(" sizeof(unsigned char): ", (int)sizeof(unsigned char));
+ SERIAL_ECHOPAIR("\nsizeof(int): ", (int)sizeof(int));
+ SERIAL_ECHOPAIR(" sizeof(unsigned int): ", (int)sizeof(unsigned int));
+ SERIAL_ECHOPAIR("\nsizeof(long): ", (int)sizeof(long));
+ SERIAL_ECHOPAIR(" sizeof(unsigned long int): ", (int)sizeof(unsigned long int));
+ SERIAL_ECHOPAIR("\nsizeof(float): ", (int)sizeof(float));
+ SERIAL_ECHOPAIR(" sizeof(double): ", (int)sizeof(double));
+ SERIAL_ECHOPAIR("\nsizeof(void *): ", (int)sizeof(void *));
+ struct pf { void *p_f(); } ptr_func;
+ SERIAL_ECHOPAIR(" sizeof(struct pf): ", (int)sizeof(pf));
+ SERIAL_ECHOPAIR(" sizeof(void *()): ", (int)sizeof(ptr_func));
+ SERIAL_EOL;
+
+ idle();
+
+ if (!blm.sanity_check())
+ SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
+ }
+
+ /**
+ * When we are fully debugged, the EEPROM dump command will get deleted also. But
+ * right now, it is good to have the extra information. Soon... we prune this.
+ */
+ void G29_EEPROM_Dump() {
+ unsigned char cccc;
+ int i, j, kkkk;
+
+ SERIAL_ECHO_START;
+ SERIAL_ECHOPGM("EEPROM Dump:\n");
+ for (i = 0; i < E2END + 1; i += 16) {
+ if (i & 0x3 == 0) idle();
+ prt_hex_word(i);
+ SERIAL_ECHOPGM(": ");
+ for (j = 0; j < 16; j++) {
+ kkkk = i + j;
+ eeprom_read_block(&cccc, (void *)kkkk, 1);
+ prt_hex_byte(cccc);
+ SERIAL_ECHO(' ');
+ }
+ SERIAL_EOL;
+ }
+ SERIAL_EOL;
+ return;
+ }
+
+ /**
+ * When we are fully debugged, this may go away. But there are some valid
+ * use cases for the users. So we can wait and see what to do with it.
+ */
+ void G29_Kompare_Current_Mesh_to_Stored_Mesh() {
+ float tmp_z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
+ int i, j, k;
+
+ if (!code_has_value()) {
+ SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
+ return;
+ }
+ Storage_Slot = code_value_int();
+
+ k = E2END - sizeof(blm.state);
+ j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(tmp_z_values);
+
+ if (Storage_Slot < 0 || Storage_Slot > j || Unified_Bed_Leveling_EEPROM_start <= 0) {
+ SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
+ return;
+ }
+
+ j = k - (Storage_Slot + 1) * sizeof(tmp_z_values);
+ eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
+
+ SERIAL_ECHOPAIR("Subtracting Mesh ", Storage_Slot);
+ SERIAL_PROTOCOLPGM(" loaded from EEPROM address "); // Soon, we can remove the extra clutter of printing
+ prt_hex_word(j); // the address in the EEPROM where the Mesh is stored.
+ SERIAL_EOL;
+
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++)
+ for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++)
+ z_values[i][j] = z_values[i][j] - tmp_z_values[i][j];
+ }
+
+ mesh_index_pair find_closest_mesh_point_of_type(Mesh_Point_Type type, float X, float Y, bool probe_as_reference, unsigned int bits[16]) {
+ int i, j;
+ float f, px, py, mx, my, dx, dy, closest = 99999.99;
+ float current_x, current_y, distance;
+ mesh_index_pair return_val;
+
+ return_val.x_index = return_val.y_index = -1;
+
+ current_x = current_position[X_AXIS];
+ current_y = current_position[Y_AXIS];
+
+ px = X; // Get our reference position. Either the nozzle or
+ py = Y; // the probe location.
+ if (probe_as_reference) {
+ px -= X_PROBE_OFFSET_FROM_EXTRUDER;
+ py -= Y_PROBE_OFFSET_FROM_EXTRUDER;
+ }
+
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
+ for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
+
+ if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
+ || (type == REAL && !isnan(z_values[i][j]))
+ || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
+ ) {
+
+ // We only get here if we found a Mesh Point of the specified type
+
+ mx = blm.map_x_index_to_bed_location(i); // Check if we can probe this mesh location
+ my = blm.map_y_index_to_bed_location(j);
+
+ // If we are using the probe as the reference
+ // there are some locations we can't get to.
+ // We prune these out of the list and ignore
+ // them until the next Phase where we do the
+ // manual nozzle probing.
+ if (probe_as_reference
+ && (mx < (MIN_PROBE_X) || mx > (MAX_PROBE_X))
+ && (my < (MIN_PROBE_Y) || my > (MAX_PROBE_Y))
+ ) continue;
+
+ dx = px - mx; // We can get to it. Let's see if it is the
+ dy = py - my; // closest location to the nozzle.
+ distance = HYPOT(dx, dy);
+
+ dx = current_x - mx; // We are going to add in a weighting factor that considers
+ dy = current_y - my; // the current location of the nozzle. If two locations are equal
+ distance += HYPOT(dx, dy) * 0.01; // distance from the measurement location, we are going to give
+
+ if (distance < closest) {
+ closest = distance; // We found a closer location with
+ return_val.x_index = i; // the specified type of mesh value.
+ return_val.y_index = j;
+ return_val.distance = closest;
+ }
+ }
+ }
+ }
+ return return_val;
+ }
+
+ void fine_tune_mesh(float X_Pos, float Y_Pos, float Height_Value, bool do_UBL_MESH_Map) {
+ mesh_index_pair location;
+ float xProbe, yProbe, new_z;
+ uint16_t i, not_done[16];
+ long round_off;
+
+ save_UBL_active_state_and_disable();
+ memset(not_done, 0xFF, sizeof(not_done));
+
+ #if ENABLED(ULTRA_LCD)
+ lcd_setstatus("Fine Tuning Mesh.", true);
+ #endif
+
+ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+ do_blocking_move_to_xy(X_Pos, Y_Pos);
+ do {
+ if (do_UBL_MESH_Map) blm.display_map(1);
+
+ location = find_closest_mesh_point_of_type( SET_IN_BITMAP, X_Pos, Y_Pos, 0, not_done); // The '0' says we want to use the nozzle's position
+ // It doesn't matter if the probe can not reach this
+ // location. This is a manual edit of the Mesh Point.
+ if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
+
+ bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
+ // different location the next time through the loop
+
+ xProbe = blm.map_x_index_to_bed_location(location.x_index);
+ yProbe = blm.map_y_index_to_bed_location(location.y_index);
+ if (xProbe < X_MIN_POS || xProbe > X_MAX_POS || yProbe < Y_MIN_POS || yProbe > Y_MAX_POS) { // In theory, we don't need this check.
+ SERIAL_PROTOCOLLNPGM("?Error: Attempt to edit off the bed."); // This really can't happen, but for now,
+ UBL_has_control_of_LCD_Panel = 0; // Let's do the check.
+ goto FINE_TUNE_EXIT;
+ }
+
+ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
+ do_blocking_move_to_xy(xProbe, yProbe);
+ new_z = z_values[location.x_index][location.y_index] + 0.001;
+
+ round_off = (int32_t)(new_z * 1000.0 + 2.5); // we chop off the last digits just to be clean. We are rounding to the
+ round_off -= (round_off % 5L); // closest 0 or 5 at the 3rd decimal place.
+ new_z = ((float)(round_off)) / 1000.0;
+
+ //SERIAL_ECHOPGM("Mesh Point Currently At: ");
+ //SERIAL_PROTOCOL_F(new_z, 6);
+ //SERIAL_EOL;
+
+ lcd_implementation_clear();
+ lcd_mesh_edit_setup(new_z);
+ UBL_has_control_of_LCD_Panel++;
+ do {
+ new_z = lcd_mesh_edit();
+ idle();
+ } while (!G29_lcd_clicked());
+
+ UBL_has_control_of_LCD_Panel = 1; // There is a race condition for the Encoder Wheel getting clicked.
+ // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune( )
+ // or here.
+ millis_t nxt = millis() + 1500UL;
+ lcd_return_to_status();
+ while (G29_lcd_clicked()) { // debounce and watch for abort
+ idle();
+ if (ELAPSED(millis(), nxt)) {
+ lcd_return_to_status();
+ SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
+ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+ lcd_setstatus("Mesh Editing Stopped", true);
+
+ while (G29_lcd_clicked()) idle();
+
+ UBL_has_control_of_LCD_Panel = 0;
+ goto FINE_TUNE_EXIT;
+ }
+ }
+ //UBL_has_control_of_LCD_Panel = 0;
+ delay(20); // We don't want any switch noise.
+
+ z_values[location.x_index][location.y_index] = new_z;
+
+ lcd_implementation_clear();
+
+ } while (location.x_index >= 0 && location.y_index >= 0 && --Repetition_Cnt);
+
+ FINE_TUNE_EXIT:
+
+ if (do_UBL_MESH_Map) blm.display_map(1);
+ restore_UBL_active_state_and_leave();
+ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+
+ do_blocking_move_to_xy(X_Pos, Y_Pos);
+
+ UBL_has_control_of_LCD_Panel = 0;
+
+ #if ENABLED(ULTRA_LCD)
+ lcd_setstatus("Done Editing Mesh", true);
+ #endif
+ SERIAL_ECHOLNPGM("Done Editing Mesh.");
+ }
+
+#endif // AUTO_BED_LEVELING_UBL
diff --git a/Marlin/UBL_line_to_destination.cpp b/Marlin/UBL_line_to_destination.cpp
new file mode 100644
index 000000000..bb3956dc3
--- /dev/null
+++ b/Marlin/UBL_line_to_destination.cpp
@@ -0,0 +1,553 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see .
+ *
+ */
+#include "Marlin.h"
+
+#if ENABLED(AUTO_BED_LEVELING_UBL)
+
+ #include "UBL.h"
+ #include "planner.h"
+ #include
+ #include
+
+ extern void set_current_to_destination();
+ extern bool G26_Debug_flag;
+ void debug_current_and_destination(char *title);
+
+ void wait_for_button_press();
+
+ void UBL_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) {
+
+ int cell_start_xi, cell_start_yi, cell_dest_xi, cell_dest_yi;
+ int left_flag, down_flag;
+ int current_xi, current_yi;
+ int dxi, dyi, xi_cnt, yi_cnt;
+ bool use_X_dist, inf_normalized_flag, inf_m_flag;
+ float x_start, y_start;
+ float x, y, z1, z2, z0 /*, z_optimized */;
+ float next_mesh_line_x, next_mesh_line_y, a0ma1diva2ma1;
+ float on_axis_distance, e_normalized_dist, e_position, e_start, z_normalized_dist, z_position, z_start;
+ float dx, dy, adx, ady, m, c;
+
+ //
+ // Much of the nozzle movement will be within the same cell. So we will do as little computation
+ // as possible to determine if this is the case. If this move is within the same cell, we will
+ // just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
+ //
+
+ x_start = current_position[X_AXIS];
+ y_start = current_position[Y_AXIS];
+ z_start = current_position[Z_AXIS];
+ e_start = current_position[E_AXIS];
+
+ cell_start_xi = blm.get_cell_index_x(x_start);
+ cell_start_yi = blm.get_cell_index_y(y_start);
+ cell_dest_xi = blm.get_cell_index_x(x_end);
+ cell_dest_yi = blm.get_cell_index_y(y_end);
+
+ if (G26_Debug_flag!=0) {
+ SERIAL_ECHOPGM(" UBL_line_to_destination(xe=");
+ SERIAL_ECHO(x_end);
+ SERIAL_ECHOPGM(",ye=");
+ SERIAL_ECHO(y_end);
+ SERIAL_ECHOPGM(",ze=");
+ SERIAL_ECHO(z_end);
+ SERIAL_ECHOPGM(",ee=");
+ SERIAL_ECHO(e_end);
+ SERIAL_ECHOPGM(")\n");
+ debug_current_and_destination( (char *) "Start of UBL_line_to_destination()");
+ }
+
+ if ((cell_start_xi == cell_dest_xi) && (cell_start_yi == cell_dest_yi)) { // if the whole move is within the same cell,
+ // we don't need to break up the move
+ //
+ // If we are moving off the print bed, we are going to allow the move at this level.
+ // But we detect it and isolate it. For now, we just pass along the request.
+ //
+
+ if (cell_dest_xi<0 || cell_dest_yi<0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) {
+
+ // Note: There is no Z Correction in this case. We are off the grid and don't know what
+ // a reasonable correction would be.
+
+ planner.buffer_line(x_end, y_end, z_end + blm.state.z_offset, e_end, feed_rate, extruder);
+ set_current_to_destination();
+ if (G26_Debug_flag!=0) {
+ debug_current_and_destination( (char *) "out of bounds in UBL_line_to_destination()");
+ }
+ return;
+ }
+
+ // we can optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
+ // generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
+ // We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
+ // We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
+ // instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
+ // to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
+
+ FINAL_MOVE:
+ a0ma1diva2ma1 = (x_end - mesh_index_to_X_location[cell_dest_xi]) * (float) (1.0 / MESH_X_DIST);
+
+ z1 = z_values[cell_dest_xi][cell_dest_yi] +
+ (z_values[cell_dest_xi + 1][cell_dest_yi] - z_values[cell_dest_xi][cell_dest_yi]) * a0ma1diva2ma1;
+
+ z2 = z_values[cell_dest_xi][cell_dest_yi+1] +
+ (z_values[cell_dest_xi+1][cell_dest_yi+1] - z_values[cell_dest_xi][cell_dest_yi+1]) * a0ma1diva2ma1;
+
+ // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
+ // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
+
+ a0ma1diva2ma1 = (y_end - mesh_index_to_Y_location[cell_dest_yi]) * (float) (1.0 / MESH_Y_DIST);
+
+ z0 = z1 + (z2 - z1) * a0ma1diva2ma1;
+
+ // debug code to use non-optimized get_z_correction() and to do a sanity check
+ // that the correct value is being passed to planner.buffer_line()
+ //
+ /*
+ z_optimized = z0;
+ z0 = blm.get_z_correction( x_end, y_end);
+ if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
+ debug_current_and_destination( (char *) "FINAL_MOVE: z_correction()");
+ if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
+ if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
+ SERIAL_ECHOPAIR(" x_end=", x_end);
+ SERIAL_ECHOPAIR(" y_end=", y_end);
+ SERIAL_ECHOPAIR(" z0=", z0);
+ SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
+ SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0));
+ SERIAL_EOL;
+ }
+ */
+ z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
+
+ if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
+ z0 = 0.0; // in z_values[][] and propagate through the
+ // calculations. If our correction is NAN, we throw it out
+ // because part of the Mesh is undefined and we don't have the
+ // information we need to complete the height correction.
+ }
+
+ planner.buffer_line(x_end, y_end, z_end + z0 + blm.state.z_offset, e_end, feed_rate, extruder);
+ if (G26_Debug_flag!=0) {
+ debug_current_and_destination( (char *) "FINAL_MOVE in UBL_line_to_destination()");
+ }
+ set_current_to_destination();
+ return;
+ }
+
+ //
+ // If we get here, we are processing a move that crosses at least one Mesh Line. We will check
+ // for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
+ // of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
+ // computation and in fact most lines are of this nature. We will check for that in the following
+ // blocks of code:
+
+ left_flag = 0;
+ down_flag = 0;
+ inf_m_flag = false;
+ inf_normalized_flag = false;
+
+ dx = x_end - x_start;
+ dy = y_end - y_start;
+
+ if (dx<0.0) { // figure out which way we need to move to get to the next cell
+ dxi = -1;
+ adx = -dx; // absolute value of dx. We already need to check if dx and dy are negative.
+ }
+ else { // We may as well generate the appropriate values for adx and ady right now
+ dxi = 1; // to save setting up the abs() function call and actually doing the call.
+ adx = dx;
+ }
+ if (dy<0.0) {
+ dyi = -1;
+ ady = -dy; // absolute value of dy
+ }
+ else {
+ dyi = 1;
+ ady = dy;
+ }
+
+ if (dx<0.0) left_flag = 1;
+ if (dy<0.0) down_flag = 1;
+ if (cell_start_xi == cell_dest_xi) dxi = 0;
+ if (cell_start_yi == cell_dest_yi) dyi = 0;
+
+ //
+ // Compute the scaling factor for the extruder for each partial move.
+ // We need to watch out for zero length moves because it will cause us to
+ // have an infinate scaling factor. We are stuck doing a floating point
+ // divide to get our scaling factor, but after that, we just multiply by this
+ // number. We also pick our scaling factor based on whether the X or Y
+ // component is larger. We use the biggest of the two to preserve precision.
+ //
+ if ( adx > ady ) {
+ use_X_dist = true;
+ on_axis_distance = x_end-x_start;
+ }
+ else {
+ use_X_dist = false;
+ on_axis_distance = y_end-y_start;
+ }
+ e_position = e_end - e_start;
+ e_normalized_dist = e_position / on_axis_distance;
+
+ z_position = z_end - z_start;
+ z_normalized_dist = z_position / on_axis_distance;
+
+ if (e_normalized_dist==INFINITY || e_normalized_dist==-INFINITY) {
+ inf_normalized_flag = true;
+ }
+ current_xi = cell_start_xi;
+ current_yi = cell_start_yi;
+
+ m = dy / dx;
+ c = y_start - m*x_start;
+ if (m == INFINITY || m == -INFINITY) {
+ inf_m_flag = true;
+ }
+ //
+ // This block handles vertical lines. These are lines that stay within the same
+ // X Cell column. They do not need to be perfectly vertical. They just can
+ // not cross into another X Cell column.
+ //
+ if (dxi == 0) { // Check for a vertical line
+ current_yi += down_flag; // Line is heading down, we just want to go to the bottom
+ while (current_yi != cell_dest_yi + down_flag) {
+ current_yi += dyi;
+ next_mesh_line_y = mesh_index_to_Y_location[current_yi];
+ if (inf_m_flag) {
+ x = x_start; // if the slope of the line is infinite, we won't do the calculations
+ }
+ // we know the next X is the same so we can recover and continue!
+ else {
+ x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
+ }
+
+ z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi);
+
+ //
+ // debug code to use non-optimized get_z_correction() and to do a sanity check
+ // that the correct value is being passed to planner.buffer_line()
+ //
+ /*
+ z_optimized = z0;
+ z0 = blm.get_z_correction( x, next_mesh_line_y);
+ if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
+ debug_current_and_destination( (char *) "VERTICAL z_correction()");
+ if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
+ if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
+ SERIAL_ECHOPAIR(" x=", x);
+ SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
+ SERIAL_ECHOPAIR(" z0=", z0);
+ SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
+ SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
+ SERIAL_ECHO("\n");
+ }
+ */
+
+ z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
+
+ if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
+ z0 = 0.0; // in z_values[][] and propagate through the
+ // calculations. If our correction is NAN, we throw it out
+ // because part of the Mesh is undefined and we don't have the
+ // information we need to complete the height correction.
+ }
+ y = mesh_index_to_Y_location[current_yi];
+
+ // Without this check, it is possible for the algorythm to generate a zero length move in the case
+ // where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
+ // happens, it might be best to remove the check and always 'schedule' the move because
+ // the planner.buffer_line() routine will filter it if that happens.
+ if ( y!=y_start) {
+ if ( inf_normalized_flag == false ) {
+ on_axis_distance = y - y_start; // we don't need to check if the extruder position
+ e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
+ z_position = z_start + on_axis_distance * z_normalized_dist;
+ }
+ else {
+ e_position = e_start;
+ z_position = z_start;
+ }
+
+ planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
+ } //else printf("FIRST MOVE PRUNED ");
+ }
+ //
+ // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
+ //
+ if (G26_Debug_flag!=0) {
+ debug_current_and_destination( (char *) "vertical move done in UBL_line_to_destination()");
+ }
+ if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) {
+ goto FINAL_MOVE;
+ }
+ set_current_to_destination();
+ return;
+ }
+
+ //
+ // This block handles horizontal lines. These are lines that stay within the same
+ // Y Cell row. They do not need to be perfectly horizontal. They just can
+ // not cross into another Y Cell row.
+ //
+
+ if (dyi == 0) { // Check for a horiziontal line
+ current_xi += left_flag; // Line is heading left, we just want to go to the left
+ // edge of this cell for the first move.
+ while (current_xi != cell_dest_xi + left_flag) {
+ current_xi += dxi;
+ next_mesh_line_x = mesh_index_to_X_location[current_xi];
+ y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
+
+ z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
+
+ //
+ // debug code to use non-optimized get_z_correction() and to do a sanity check
+ // that the correct value is being passed to planner.buffer_line()
+ //
+ /*
+ z_optimized = z0;
+ z0 = blm.get_z_correction( next_mesh_line_x, y);
+ if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
+ debug_current_and_destination( (char *) "HORIZONTAL z_correction()");
+ if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
+ if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
+ SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
+ SERIAL_ECHOPAIR(" y=", y);
+ SERIAL_ECHOPAIR(" z0=", z0);
+ SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
+ SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
+ SERIAL_ECHO("\n");
+ }
+ */
+
+ z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
+
+ if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
+ z0 = 0.0; // in z_values[][] and propagate through the
+ // calculations. If our correction is NAN, we throw it out
+ // because part of the Mesh is undefined and we don't have the
+ // information we need to complete the height correction.
+ }
+ x = mesh_index_to_X_location[current_xi];
+
+ // Without this check, it is possible for the algorythm to generate a zero length move in the case
+ // where the line is heading left and it is starting right on a Mesh Line boundary. For how often
+ // that happens, it might be best to remove the check and always 'schedule' the move because
+ // the planner.buffer_line() routine will filter it if that happens.
+ if ( x!=x_start) {
+ if ( inf_normalized_flag == false ) {
+ on_axis_distance = x - x_start; // we don't need to check if the extruder position
+ e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
+ z_position = z_start + on_axis_distance * z_normalized_dist;
+ }
+ else {
+ e_position = e_start;
+ z_position = z_start;
+ }
+
+ planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
+ } //else printf("FIRST MOVE PRUNED ");
+ }
+ if (G26_Debug_flag!=0) {
+ debug_current_and_destination( (char *) "horizontal move done in UBL_line_to_destination()");
+ }
+ if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) {
+ goto FINAL_MOVE;
+ }
+ set_current_to_destination();
+ return;
+ }
+
+ //
+ //
+ //
+ //
+ // This block handles the generic case of a line crossing both X and Y
+ // Mesh lines.
+ //
+ //
+ //
+ //
+
+ xi_cnt = cell_start_xi - cell_dest_xi;
+ if ( xi_cnt < 0 ) {
+ xi_cnt = -xi_cnt;
+ }
+
+ yi_cnt = cell_start_yi - cell_dest_yi;
+ if ( yi_cnt < 0 ) {
+ yi_cnt = -yi_cnt;
+ }
+
+ current_xi += left_flag;
+ current_yi += down_flag;
+
+ while ( xi_cnt>0 || yi_cnt>0 ) {
+
+ next_mesh_line_x = mesh_index_to_X_location[current_xi + dxi];
+ next_mesh_line_y = mesh_index_to_Y_location[current_yi + dyi];
+
+ y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
+ x = (next_mesh_line_y-c) / m; // Calculate X at the next Y mesh line (we don't have to worry
+ // about m being equal to 0.0 If this was the case, we would have
+ // detected this as a vertical line move up above and we wouldn't
+ // be down here doing a generic type of move.
+
+ if ((left_flag && (x>next_mesh_line_x)) || (!left_flag && (x .01 || isnan(z0) || isnan(z_optimized) ) {
+ debug_current_and_destination( (char *) "General_1: z_correction()");
+ if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
+ if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); {
+ SERIAL_ECHOPAIR(" x=", x);
+ }
+ SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
+ SERIAL_ECHOPAIR(" z0=", z0);
+ SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
+ SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
+ SERIAL_ECHO("\n");
+ }
+ */
+
+ z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
+ if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
+ z0 = 0.0; // in z_values[][] and propagate through the
+ // calculations. If our correction is NAN, we throw it out
+ // because part of the Mesh is undefined and we don't have the
+ // information we need to complete the height correction.
+ }
+
+ if ( inf_normalized_flag == false ) {
+ if ( use_X_dist ) {
+ on_axis_distance = x - x_start;
+ }
+ else {
+ on_axis_distance = next_mesh_line_y - y_start;
+ }
+ e_position = e_start + on_axis_distance * e_normalized_dist;
+ z_position = z_start + on_axis_distance * z_normalized_dist;
+ }
+ else {
+ e_position = e_start;
+ z_position = z_start;
+ }
+ planner.buffer_line(x, next_mesh_line_y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
+ current_yi += dyi;
+ yi_cnt--;
+ }
+ else {
+ //
+ // Yes! Crossing a X Mesh Line next
+ //
+ z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi+dxi, current_yi-down_flag);
+
+
+ //
+ // debug code to use non-optimized get_z_correction() and to do a sanity check
+ // that the correct value is being passed to planner.buffer_line()
+ //
+ /*
+ z_optimized = z0;
+ z0 = blm.get_z_correction( next_mesh_line_x, y);
+ if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
+ debug_current_and_destination( (char *) "General_2: z_correction()");
+ if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
+ if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
+ SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
+ SERIAL_ECHOPAIR(" y=", y);
+ SERIAL_ECHOPAIR(" z0=", z0);
+ SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
+ SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
+ SERIAL_ECHO("\n");
+ }
+ */
+
+ z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
+
+ if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
+ z0 = 0.0; // in z_values[][] and propagate through the
+ // calculations. If our correction is NAN, we throw it out
+ // because part of the Mesh is undefined and we don't have the
+ // information we need to complete the height correction.
+ }
+ if ( inf_normalized_flag == false ) {
+ if ( use_X_dist ) {
+ on_axis_distance = next_mesh_line_x - x_start;
+ }
+ else {
+ on_axis_distance = y - y_start;
+ }
+ e_position = e_start + on_axis_distance * e_normalized_dist;
+ z_position = z_start + on_axis_distance * z_normalized_dist;
+ }
+ else {
+ e_position = e_start;
+ z_position = z_start;
+ }
+
+ planner.buffer_line(next_mesh_line_x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
+ current_xi += dxi;
+ xi_cnt--;
+ }
+ }
+ if (G26_Debug_flag) {
+ debug_current_and_destination( (char *) "generic move done in UBL_line_to_destination()");
+ }
+ if (current_position[0] != x_end || current_position[1] != y_end) {
+ goto FINAL_MOVE;
+ }
+ set_current_to_destination();
+ return;
+ }
+
+ void wait_for_button_press() {
+ // if ( !been_to_2_6 )
+ //return; // bob - I think this should be commented out
+
+ SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65
+ SET_OUTPUT(64);
+ while (READ(66) & 0x01) idle();
+
+ delay(50);
+ while (!(READ(66) & 0x01)) idle();
+ delay(50);
+ }
+
+#endif
+
+
diff --git a/Marlin/hex_print_routines.cpp b/Marlin/hex_print_routines.cpp
new file mode 100644
index 000000000..19563ccb8
--- /dev/null
+++ b/Marlin/hex_print_routines.cpp
@@ -0,0 +1,47 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see .
+ *
+ */
+
+
+#include "Marlin.h"
+#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(M100_FREE_MEMORY_WATCHER)
+
+#include "hex_print_routines.h"
+
+void prt_hex_nibble(uint8_t n) {
+ if (n <= 9)
+ SERIAL_ECHO(n);
+ else
+ SERIAL_ECHO((char)('A' + n - 10));
+ delay(3);
+}
+
+void prt_hex_byte(uint8_t b) {
+ prt_hex_nibble((b & 0xF0) >> 4);
+ prt_hex_nibble(b & 0x0F);
+}
+
+void prt_hex_word(uint16_t w) {
+ prt_hex_byte((w & 0xFF00) >> 8);
+ prt_hex_byte(w & 0x0FF);
+}
+
+#endif // AUTO_BED_LEVELING_UBL || M100_FREE_MEMORY_WATCHER
diff --git a/Marlin/hex_print_routines.h b/Marlin/hex_print_routines.h
new file mode 100644
index 000000000..f6b7b28e2
--- /dev/null
+++ b/Marlin/hex_print_routines.h
@@ -0,0 +1,33 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see .
+ *
+ */
+
+#ifndef HEX_PRINT_ROUTINES_H
+#define HEX_PRINT_ROUTINES_H
+
+//
+// 3 support routines to print hex numbers. We can print a nibble, byte and word
+//
+void prt_hex_nibble(uint8_t n);
+void prt_hex_byte(uint8_t b);
+void prt_hex_word(uint16_t w);
+
+#endif // HEX_PRINT_ROUTINES_H
\ No newline at end of file