diff --git a/Marlin/Configuration.h b/Marlin/Configuration.h index d532539ef..4f7ab5a6b 100644 --- a/Marlin/Configuration.h +++ b/Marlin/Configuration.h @@ -4,8 +4,8 @@ // This determines the communication speed of the printer -#define BAUDRATE 250000 -//#define BAUDRATE 115200 +//#define BAUDRATE 250000 +#define BAUDRATE 115200 //#define BAUDRATE 230400 #define EXTRUDERS 1 @@ -26,11 +26,11 @@ // MEGA/RAMPS up to 1.2 = 3, // RAMPS 1.3 = 33 // Gen6 = 5, -// Sanguinololu 1.2 and above = 62, -// Ultimaker = 7, +// Sanguinololu 1.2 and above = 62 // Gen7 = 77, +// Ultimaker = 7, // Teensylu = 8 -#define MOTHERBOARD 7 +#define MOTHERBOARD 77 //=========================================================================== //=============================Thermal Settings ============================ @@ -45,23 +45,23 @@ // 6 is EPCOS 100k // 7 is 100k Honeywell thermistor 135-104LAG-J01 -//#define THERMISTORHEATER_0 3 +#define THERMISTORHEATER_0 1 //#define THERMISTORHEATER_1 1 //#define THERMISTORHEATER_2 1 -//#define HEATER_0_USES_THERMISTOR +#define HEATER_0_USES_THERMISTOR //#define HEATER_1_USES_THERMISTOR //#define HEATER_2_USES_THERMISTOR -#define HEATER_0_USES_AD595 +//#define HEATER_0_USES_AD595 //#define HEATER_1_USES_AD595 //#define HEATER_2_USES_AD595 // Select one of these only to define how the bed temp is read. -//#define THERMISTORBED 1 -//#define BED_USES_THERMISTOR +#define THERMISTORBED 1 +#define BED_USES_THERMISTOR //#define BED_LIMIT_SWITCHING #ifdef BED_LIMIT_SWITCHING - #define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS +#define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS #endif //#define BED_USES_AD595 @@ -75,10 +75,10 @@ // Actual temperature must be close to target for this long before M109 returns success #define TEMP_RESIDENCY_TIME 30 // (seconds) -#define TEMP_HYSTERESIS 3 // (C°) range of +/- temperatures considered "close" to the target one +#define TEMP_HYSTERESIS 3 // (C°) range of +/- temperatures considered "close" to the target one //// The minimal temperature defines the temperature below which the heater will not be enabled -#define HEATER_0_MINTEMP 5 +//#define HEATER_0_MINTEMP 5 //#define HEATER_1_MINTEMP 5 //#define HEATER_2_MINTEMP 5 //#define BED_MINTEMP 5 @@ -107,37 +107,37 @@ #define PIDTEMP #define PID_MAX 255 // limits current to nozzle; 255=full current #ifdef PIDTEMP - //#define PID_DEBUG // Sends debug data to the serial port. - //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in % - #define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term - #define K1 0.95 //smoothing factor withing the PID - #define PID_dT 0.128 //sampling period of the PID - - //To develop some PID settings for your machine, you can initiall follow - // the Ziegler-Nichols method. - // set Ki and Kd to zero. - // heat with a defined Kp and see if the temperature stabilizes - // ideally you do this graphically with repg. - // the PID_CRITIAL_GAIN should be the Kp at which temperature oscillatins are not dampned out/decreas in amplitutde - // PID_SWING_AT_CRITIAL is the time for a full period of the oscillations at the critical Gain - // usually further manual tunine is necessary. - - #define PID_CRITIAL_GAIN 50 - #define PID_SWING_AT_CRITIAL 47 //seconds - - //#define PID_PI //no differentail term - #define PID_PID //normal PID - - #ifdef PID_PID - //PID according to Ziegler-Nichols method +//#define PID_DEBUG // Sends debug data to the serial port. +//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in % +#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term +#define K1 0.95 //smoothing factor withing the PID +#define PID_dT 0.128 //sampling period of the PID + +//To develop some PID settings for your machine, you can initiall follow +// the Ziegler-Nichols method. +// set Ki and Kd to zero. +// heat with a defined Kp and see if the temperature stabilizes +// ideally you do this graphically with repg. +// the PID_CRITIAL_GAIN should be the Kp at which temperature oscillatins are not dampned out/decreas in amplitutde +// PID_SWING_AT_CRITIAL is the time for a full period of the oscillations at the critical Gain +// usually further manual tunine is necessary. + +#define PID_CRITIAL_GAIN 50 +#define PID_SWING_AT_CRITIAL 47 //seconds + +//#define PID_PI //no differentail term +#define PID_PID //normal PID + +#ifdef PID_PID +//PID according to Ziegler-Nichols method // #define DEFAULT_Kp (0.6*PID_CRITIAL_GAIN) // #define DEFAULT_Ki (2*Kp/PID_SWING_AT_CRITIAL*PID_dT) // #define DEFAULT_Kd (PID_SWING_AT_CRITIAL/8./PID_dT) // Ultitmaker - #define DEFAULT_Kp 22.2 - #define DEFAULT_Ki (1.25*PID_dT) - #define DEFAULT_Kd (99/PID_dT) +#define DEFAULT_Kp 22.2 +#define DEFAULT_Ki (1.25*PID_dT) +#define DEFAULT_Kd (99/PID_dT) // Makergear // #define DEFAULT_Kp 7.0 @@ -148,21 +148,21 @@ // #define DEFAULT_Kp 63.0 // #define DEFAULT_Ki (2.25*PID_dT) // #define DEFAULT_Kd (440/PID_dT) - #endif - - #ifdef PID_PI - //PI according to Ziegler-Nichols method - #define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2) - #define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT) - #define DEFAULT_Kd (0) - #endif - - // this adds an experimental additional term to the heatingpower, proportional to the extrusion speed. - // if Kc is choosen well, the additional required power due to increased melting should be compensated. - #define PID_ADD_EXTRUSION_RATE - #ifdef PID_ADD_EXTRUSION_RATE - #define DEFAULT_Kc (1) //heatingpower=Kc*(e_speed) - #endif +#endif + +#ifdef PID_PI +//PI according to Ziegler-Nichols method +#define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2) +#define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT) +#define DEFAULT_Kd (0) +#endif + +// this adds an experimental additional term to the heatingpower, proportional to the extrusion speed. +// if Kc is choosen well, the additional required power due to increased melting should be compensated. +#define PID_ADD_EXTRUSION_RATE +#ifdef PID_ADD_EXTRUSION_RATE +#define DEFAULT_Kc (1) //heatingpower=Kc*(e_speed) +#endif #endif // PIDTEMP // extruder run-out prevention. @@ -184,9 +184,9 @@ #define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors // The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins. -const bool X_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. -const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. -const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. +const bool X_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops. +const bool Y_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops. +const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops. // For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false #define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing @@ -209,9 +209,9 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th //#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true //#define INVERT_E*_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false, used for all extruders -#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true +#define INVERT_X_DIR false // for Mendel set to false, for Orca set to true #define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false -#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true +#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true #define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false #define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false #define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false @@ -256,7 +256,8 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th #define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate #define DEFAULT_MINTRAVELFEEDRATE 0.0 -// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff. +// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while +//printing high speed & high detail. It will slowdown on the detailed stuff. #define DEFAULT_MINSEGMENTTIME 20000 // Obsolete delete this #define DEFAULT_XYJERK 20.0 // (mm/sec) #define DEFAULT_ZJERK 0.4 // (mm/sec) @@ -290,7 +291,7 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th // this enables the watchdog interrupt. //#define USE_WATCHDOG //#ifdef USE_WATCHDOG - // you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby: +// you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby: //#define RESET_MANUAL //#define WATCHDOG_TIMEOUT 4 //seconds //#endif @@ -305,12 +306,12 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th //#define ADVANCE #ifdef ADVANCE - #define EXTRUDER_ADVANCE_K .0 +#define EXTRUDER_ADVANCE_K .0 - #define D_FILAMENT 2.85 - #define STEPS_MM_E 836 - #define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159) - #define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA) +#define D_FILAMENT 2.85 +#define STEPS_MM_E 836 +#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159) +#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA) #endif // ADVANCE @@ -321,18 +322,18 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th #define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers? #define SD_FINISHED_RELEASECOMMAND "M84 X Y E" // no z because of layer shift. -//#define ULTIPANEL +#define ULTIPANEL #ifdef ULTIPANEL - //#define NEWPANEL //enable this if you have a click-encoder panel - #define SDSUPPORT - #define ULTRA_LCD - #define LCD_WIDTH 20 - #define LCD_HEIGHT 4 +#define NEWPANEL //enable this if you have a click-encoder panel +#define SDSUPPORT +#define ULTRA_LCD +#define LCD_WIDTH 20 +#define LCD_HEIGHT 4 #else //no panel but just lcd - #ifdef ULTRA_LCD - #define LCD_WIDTH 16 - #define LCD_HEIGHT 2 - #endif +#ifdef ULTRA_LCD +#define LCD_WIDTH 16 +#define LCD_HEIGHT 2 +#endif #endif // A debugging feature to compare calculated vs performed steps, to see if steps are lost by the software. @@ -353,13 +354,13 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th // on an ultimaker, some initial testing worked with M109 S215 T260 F0.1 in the start.gcode //#define AUTOTEMP #ifdef AUTOTEMP - #define AUTOTEMP_OLDWEIGHT 0.98 +#define AUTOTEMP_OLDWEIGHT 0.98 #endif //this prevents dangerous Extruder moves, i.e. if the temperature is under the limit //can be software-disabled for whatever purposes by #define PREVENT_DANGEROUS_EXTRUDE -#define EXTRUDE_MINTEMP 190 +#define EXTRUDE_MINTEMP 0 #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances. const int dropsegments=5; //everything with less than this number of steps will be ignored as move and joined with the next movement @@ -378,9 +379,9 @@ const int dropsegments=5; //everything with less than this number of steps will // The number of linear motions that can be in the plan at any give time. // THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ringbuffering. #if defined SDSUPPORT - #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller +#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller #else - #define BLOCK_BUFFER_SIZE 16 // maximize block buffer +#define BLOCK_BUFFER_SIZE 16 // maximize block buffer #endif @@ -392,3 +393,5 @@ const int dropsegments=5; //everything with less than this number of steps will #include "thermistortables.h" #endif //__CONFIGURATION_H + + diff --git a/Marlin/Marlin.pde b/Marlin/Marlin.pde index d156ff5cc..fc5cdf087 100644 --- a/Marlin/Marlin.pde +++ b/Marlin/Marlin.pde @@ -237,9 +237,11 @@ void setup_photpin() void setup_powerhold() { #ifdef SUICIDE_PIN + #if (SUICIDE_PIN> -1) SET_OUTPUT(SUICIDE_PIN); WRITE(SUICIDE_PIN, HIGH); - #endif + #endif + #endif } void suicide() diff --git a/Marlin/ultralcd.pde b/Marlin/ultralcd.pde index 952ff1293..57186b9f1 100644 --- a/Marlin/ultralcd.pde +++ b/Marlin/ultralcd.pde @@ -527,23 +527,119 @@ void MainMenu::showAxisMove() MENUITEM( lcdprintPGM(" Main \003") , BLOCK;status=Main_Menu;beepshort(); ) ; break; case ItemAM_X: - MENUITEM( lcdprintPGM(" X+") , BLOCK;enquecommand("G92 X0");enquecommand("G1 F700 X10");beepshort(); ) ; + // MENUITEM( lcdprintPGM(" X+") , BLOCK;enquecommand("G92 X0");enquecommand("G1 F700 X10");beepshort(); ) ; + { + if(force_lcd_update) + { + lcd.setCursor(0,line);lcdprintPGM(" X:"); + lcd.setCursor(13,line);lcd.print(ftostr3(current_position[X_AXIS])); + } + + if((activeline!=line) ) + break; + + if(CLICKED) + { + linechanging=!linechanging; + if(linechanging) + { + encoderpos=current_position[X_AXIS]; + } + else + { + enquecommand("G1 F700 X"+encoderpos); + encoderpos=activeline*lcdslow; + beepshort(); + } + BLOCK; + } + if(linechanging) + { + if(encoderpos<1) encoderpos=1; + if(encoderpos>200) encoderpos=200; + lcd.setCursor(13,line);lcd.print(current_position[X_AXIS]); + } + } break; case ItemAM_Y: - MENUITEM( lcdprintPGM(" Y+") , BLOCK;enquecommand("G92 Y0");enquecommand("G1 F700 Y10");beepshort(); ) ; + //MENUITEM( lcdprintPGM(" Y+") , BLOCK;enquecommand("G92 Y0");enquecommand("G1 F700 Y10");beepshort(); ) ; + { + if(force_lcd_update) + { + lcd.setCursor(0,line);lcdprintPGM(" Y:"); + lcd.setCursor(13,line);lcd.print(ftostr3(current_position[Y_AXIS])); + } + + if((activeline!=line) ) + break; + + if(CLICKED) + { + linechanging=!linechanging; + if(linechanging) + { + encoderpos=current_position[Y_AXIS]; + } + else + { + enquecommand("G1 F700 Y"+encoderpos); + encoderpos=activeline*lcdslow; + beepshort(); + } + BLOCK; + } + if(linechanging) + { + if(encoderpos<1) encoderpos=1; + if(encoderpos>200) encoderpos=200; + lcd.setCursor(13,line);lcd.print(current_position[Y_AXIS]); + } + } break; case ItemAM_Z: - MENUITEM( lcdprintPGM(" Z+") , BLOCK;enquecommand("G92 Z0");enquecommand("G1 F700 Z10");beepshort(); ) ; + //MENUITEM( lcdprintPGM(" Z+") , BLOCK;enquecommand("G92 Z0");enquecommand("G1 F700 Z10");beepshort(); ) ; + { + if(force_lcd_update) + { + lcd.setCursor(0,line);lcdprintPGM(" Z:"); + lcd.setCursor(13,line);lcd.print(ftostr3(current_position[Z_AXIS])); + } + + if((activeline!=line) ) + break; + + if(CLICKED) + { + linechanging=!linechanging; + if(linechanging) + { + encoderpos=current_position[Z_AXIS]; + } + else + { + enquecommand("G1 F700 Z"+encoderpos); + encoderpos=activeline*lcdslow; + beepshort(); + } + BLOCK; + } + if(linechanging) + { + if(encoderpos<1) encoderpos=1; + if(encoderpos>170) encoderpos=170; + lcd.setCursor(13,line);lcd.print(current_position[Z_AXIS]); + } + } break; case ItemAM_E: - MENUITEM( lcdprintPGM(" Extrude") , BLOCK;enquecommand("G92 E0");enquecommand("G1 F700 E50");beepshort(); ) ; + MENUITEM( lcdprintPGM(" Extrude") , BLOCK;enquecommand("G92 E0");enquecommand("G1 F700 E10");beepshort(); ) ; break; default: break; } line++; } - updateActiveLines(ItemAM_Z,encoderpos); + updateActiveLines(ItemAM_E,encoderpos); } enum {ItemT_exit,ItemT_speed,ItemT_flow,ItemT_nozzle, @@ -1189,7 +1285,7 @@ enum { ItemCM_vmaxx, ItemCM_vmaxy, ItemCM_vmaxz, ItemCM_vmaxe, ItemCM_vtravmin,ItemCM_vmin, ItemCM_amaxx, ItemCM_amaxy, ItemCM_amaxz, ItemCM_amaxe, - ItemCM_aret,ItemCM_esteps + ItemCM_aret, ItemCM_xsteps,ItemCM_ysteps, ItemCM_zsteps, ItemCM_esteps }; @@ -1465,11 +1561,126 @@ void MainMenu::showControlMotion() } }break; + case ItemCM_xsteps://axis_steps_per_unit[i] = code_value(); + { + if(force_lcd_update) + { + lcd.setCursor(0,line);lcdprintPGM(" X steps/mm:"); + lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[0])); + } + + if((activeline!=line) ) + break; + + if(CLICKED) + { + linechanging=!linechanging; + if(linechanging) + { + encoderpos=(int)axis_steps_per_unit[0]; + } + else + { + float factor=float(encoderpos)/float(axis_steps_per_unit[0]); + position[X_AXIS]=lround(position[X_AXIS]*factor); + //current_position[3]*=factor; + axis_steps_per_unit[X_AXIS]= encoderpos; + encoderpos=activeline*lcdslow; + + } + BLOCK; + beepshort(); + } + if(linechanging) + { + if(encoderpos<5) encoderpos=5; + if(encoderpos>9999) encoderpos=9999; + lcd.setCursor(13,line);lcd.print(itostr4(encoderpos)); + } + + }break; + case ItemCM_ysteps://axis_steps_per_unit[i] = code_value(); + { + if(force_lcd_update) + { + lcd.setCursor(0,line);lcdprintPGM(" Y steps/mm:"); + lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[1])); + } + + if((activeline!=line) ) + break; + + if(CLICKED) + { + linechanging=!linechanging; + if(linechanging) + { + encoderpos=(int)axis_steps_per_unit[1]; + } + else + { + float factor=float(encoderpos)/float(axis_steps_per_unit[1]); + position[Y_AXIS]=lround(position[Y_AXIS]*factor); + //current_position[3]*=factor; + axis_steps_per_unit[Y_AXIS]= encoderpos; + encoderpos=activeline*lcdslow; + + } + BLOCK; + beepshort(); + } + if(linechanging) + { + if(encoderpos<5) encoderpos=5; + if(encoderpos>9999) encoderpos=9999; + lcd.setCursor(13,line);lcd.print(itostr4(encoderpos)); + } + + }break; + case ItemCM_zsteps://axis_steps_per_unit[i] = code_value(); + { + if(force_lcd_update) + { + lcd.setCursor(0,line);lcdprintPGM(" Z steps/mm:"); + lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[2])); + } + + if((activeline!=line) ) + break; + + if(CLICKED) + { + linechanging=!linechanging; + if(linechanging) + { + encoderpos=(int)axis_steps_per_unit[2]; + } + else + { + float factor=float(encoderpos)/float(axis_steps_per_unit[2]); + position[Z_AXIS]=lround(position[Z_AXIS]*factor); + //current_position[3]*=factor; + axis_steps_per_unit[Z_AXIS]= encoderpos; + encoderpos=activeline*lcdslow; + + } + BLOCK; + beepshort(); + } + if(linechanging) + { + if(encoderpos<5) encoderpos=5; + if(encoderpos>9999) encoderpos=9999; + lcd.setCursor(13,line);lcd.print(itostr4(encoderpos)); + } + + }break; + case ItemCM_esteps://axis_steps_per_unit[i] = code_value(); { if(force_lcd_update) { - lcd.setCursor(0,line);lcdprintPGM(" Esteps/mm:"); + lcd.setCursor(0,line);lcdprintPGM(" E steps/mm:"); lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[3])); }